Recently the author introduced two new integer partition quadruple functions, which satisfy Ramanujan-type congruences modulo , , , and . Here we reprove the congruences modulo , , and by defining a rank-type statistic that gives a combinatorial refinement of the congruences.
L’auteur a récemment introduit deux fonctions de partitions entières qui satisfont des congruences du type Ramanujan modulo 3, 5, 7, et 13. On definit une statistique du type rang et obtient une amélioration de l’interprêtation combinatoire des congruences modulo 3, 5 et 7.
Revised:
Accepted:
Published online:
Keywords: Number theory, partitions, vector partitions, congruences, ranks, cranks
@article{JTNB_2017__29_2_425_0, author = {Chris Jennings-Shaffer}, title = {Ranks {For} {Two} {Partition} {Quadruple} {Functions}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {425--443}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {2}, year = {2017}, doi = {10.5802/jtnb.986}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.986/} }
TY - JOUR AU - Chris Jennings-Shaffer TI - Ranks For Two Partition Quadruple Functions JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 425 EP - 443 VL - 29 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.986/ DO - 10.5802/jtnb.986 LA - en ID - JTNB_2017__29_2_425_0 ER -
%0 Journal Article %A Chris Jennings-Shaffer %T Ranks For Two Partition Quadruple Functions %J Journal de théorie des nombres de Bordeaux %D 2017 %P 425-443 %V 29 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.986/ %R 10.5802/jtnb.986 %G en %F JTNB_2017__29_2_425_0
Chris Jennings-Shaffer. Ranks For Two Partition Quadruple Functions. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 2, pp. 425-443. doi : 10.5802/jtnb.986. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.986/
[1] The theory of partitions, Encyclopedia of Mathematics and Its Applications, 2, Addison-Wesley Publishing Company, 1976, xiv+255 pages
[2] Ramanujan’s lost notebook. Part III, Springer, 2012, xii+435 pages
[3] Dyson’s crank of a partition, Bull. Am. Math. Soc., Volume 18 (1988) no. 2, pp. 167-171 | DOI
[4] Some properties of partitions, Proc. Lond. Math. Soc., Volume 4 (1954), pp. 84-106 | DOI
[5] Generalized Lambert series identities, Proc. Lond. Math. Soc., Volume 91 (2005) no. 3, pp. 598-622 | DOI
[6] Some guesses in the theory of partitions, Eureka, Volume 8 (1944), pp. 10-15
[7] New combinatorial interpretations of Ramanujan’s partition congruences mod and , Trans. Am. Math. Soc., Volume 305 (1988) no. 1, pp. 47-77
[8] Two partition functions with congruences modulo 3, 5, 7, and 13 (to appear in Ann. Comb.)
[9] Some Smallest Parts Functions from Variations of Bailey’s Lemma (2015) (https://arxiv.org/abs/1506.05344)
[10] Mock theta functions, Utrecht University (2003) (Ph. D. Thesis)
Cited by Sources: