Recently, W. M. Schmidt and L. Summerer developed a new theory called Parametric Geometry of Numbers which approximates the behaviour of the successive minima of a family of convex bodies in related to the problem of simultaneous rational approximation to given real numbers. In the case of one number, we show that the qualitative behaviour of the minima reflects the continued fraction expansion of the smallest distance from this number to an integer.
W. M. Schmidt et L. Summerer ont récemment proposé une théorie qui décrit approximativement le comportement des minima successifs d’une famille de corps convexes à un paramètre, celle qui intervient dans les problèmes d’approximation rationnelle simultanée de plusieurs nombres. Dans le cas d’un seul nombre, nous montrons que le comportement qualitatif exact des minima reflète le développement en fraction continue de la plus petite distance de ce nombre à un entier.
Revised:
Accepted:
Published online:
Keywords: Convex body, Successive minima, Combined graph, Continue fractions
Aminata Keita 1
@article{JTNB_2017__29_1_129_0, author = {Aminata Keita}, title = {Continued fractions and {Parametric} geometry of numbers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {129--135}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {1}, year = {2017}, doi = {10.5802/jtnb.971}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.971/} }
TY - JOUR AU - Aminata Keita TI - Continued fractions and Parametric geometry of numbers JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 129 EP - 135 VL - 29 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.971/ DO - 10.5802/jtnb.971 LA - en ID - JTNB_2017__29_1_129_0 ER -
%0 Journal Article %A Aminata Keita %T Continued fractions and Parametric geometry of numbers %J Journal de théorie des nombres de Bordeaux %D 2017 %P 129-135 %V 29 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.971/ %R 10.5802/jtnb.971 %G en %F JTNB_2017__29_1_129_0
Aminata Keita. Continued fractions and Parametric geometry of numbers. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 1, pp. 129-135. doi : 10.5802/jtnb.971. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.971/
[1] On Schmidt and Summerer parametric geometry of numbers (Annals of Mathematics, to appear)
[2] Diophantine approximation, Lecture Notes in Mathematics, 785, Springer-Verlag, 1980, x+299 pages
[3] Parametric geometry of numbers and applications, Acta Arith., Volume 140 (2009) no. 1, pp. 67-91 | DOI
[4] Diophantine approximation and parametric geometry of numbers, Monatsh. Math., Volume 169 (2013) no. 1, pp. 51-104 | DOI
Cited by Sources: