We study open subgroups of in terms of some associated Lie algebras without assuming that is a pro- group, thereby extending a theorem of Pink. The result has applications to the study of families of Galois representations.
Nous étudions les sous-groupes ouverts de en termes de certaines algèbres de Lie, et ceci sans supposer que est un groupe pro-. Le résultat étend un théorème dû à Pink et a des applications à l’étude de certaines familles de représentations galoisiennes.
Revised:
Accepted:
Published online:
Keywords: Lie algebras, profinite groups, special linear group, $p$-adic integers
Davide Lombardo 1
@article{JTNB_2017__29_1_85_0, author = {Davide Lombardo}, title = {Pink-type results for general subgroups of $\operatorname{SL}_2(\mathbb{Z}_\ell )^n$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {85--127}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {1}, year = {2017}, doi = {10.5802/jtnb.970}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.970/} }
TY - JOUR AU - Davide Lombardo TI - Pink-type results for general subgroups of $\operatorname{SL}_2(\mathbb{Z}_\ell )^n$ JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 85 EP - 127 VL - 29 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.970/ DO - 10.5802/jtnb.970 LA - en ID - JTNB_2017__29_1_85_0 ER -
%0 Journal Article %A Davide Lombardo %T Pink-type results for general subgroups of $\operatorname{SL}_2(\mathbb{Z}_\ell )^n$ %J Journal de théorie des nombres de Bordeaux %D 2017 %P 85-127 %V 29 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.970/ %R 10.5802/jtnb.970 %G en %F JTNB_2017__29_1_85_0
Davide Lombardo. Pink-type results for general subgroups of $\operatorname{SL}_2(\mathbb{Z}_\ell )^n$. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 1, pp. 85-127. doi : 10.5802/jtnb.970. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.970/
[1] Bounds for Serre’s open image theorem for elliptic curves over number fields, Algebra Number Theory, Volume 9 (2015) no. 10, pp. 2347-2395 | DOI
[2] An explicit open image theorem for products of elliptic curves, J. Number Theory, Volume 168 (2016), pp. 386-412 | DOI
[3] Galois properties of division fields of elliptic curves, Bull. Lond. Math. Soc., Volume 25 (1993) no. 3, pp. 247-254 | DOI
[4] Classification of pro- subgroups of over a -adic ring, where is an odd prime, Compos. Math., Volume 88 (1993) no. 3, pp. 251-264
[5] Galois action on division points of Abelian varieties with real multiplications, Am. J. Math., Volume 98 (1976), pp. 751-804 | DOI
[6] Abelian -adic Representations and Elliptic Curves, Research Notes in Mathematics, A. K. Peters/CRC Press, 1997, 208 pages
[7] Automorphisms of -dimensional linear groups over a local rings, J. Math. Res. Expo., Volume 5 (1985) no. 1, pp. 25-28
[8] Twists of Galois representations and projective automorphisms, J. Number Theory, Volume 74 (1999) no. 1, pp. 1-18 | DOI
Cited by Sources: