On the equivalence of types
Journal de Théorie des Nombres de Bordeaux, Tome 28 (2016) no. 3, pp. 743-771.

Un type sur un corps de valuation discrète (K,v) est un objet computationnel qui paramètrise une famille de polynômes unitaires irréductibles sur K v [x], où K v est le complété de K. Deux types sont équivalents s’ils determinent la même famille de polynômes irréductibles sur K v [x]. Dans ce travail, nous donnons différentes caractérisations de la notion d’équivalence de types par rapport à certaines données et des opérateurs qui leur sont associés.

Types over a discrete valued field (K,v) are computational objects that parameterize certain families of monic irreducible polynomials in K v [x], where K v is the completion of K at v. Two types are considered to be equivalent if they encode the same family of prime polynomials in K v [x]. In this paper, we find diferent characterizations of the equivalence of types in terms of certain data and operators associated with them.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.962
Classification : 11Y40,  13A18,  11S05,  14Q05
Mots clés : inductive valuation, MacLane chain, Newton polygon, residual polynomial, types
@article{JTNB_2016__28_3_743_0,
     author = {Enric Nart},
     title = {On the equivalence of types},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {743--771},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {28},
     number = {3},
     year = {2016},
     doi = {10.5802/jtnb.962},
     zbl = {1409.11101},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.962/}
}
TY  - JOUR
AU  - Enric Nart
TI  - On the equivalence of types
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2016
DA  - 2016///
SP  - 743
EP  - 771
VL  - 28
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.962/
UR  - https://zbmath.org/?q=an%3A1409.11101
UR  - https://doi.org/10.5802/jtnb.962
DO  - 10.5802/jtnb.962
LA  - en
ID  - JTNB_2016__28_3_743_0
ER  - 
Enric Nart. On the equivalence of types. Journal de Théorie des Nombres de Bordeaux, Tome 28 (2016) no. 3, pp. 743-771. doi : 10.5802/jtnb.962. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.962/

[1] J. Fernández, J. Guàrdia, J. Montes & E. Nart, « Residual ideals of MacLane valuations », J. Algebra 427 (2015), p. 30-75. | Article | MR 3312294 | Zbl 1317.13006

[2] J. Guàrdia, J. Montes & E. Nart, « Okutsu invariants and Newton polygons », Acta Arith. 145 (2010), no. 1, p. 83-108. | Article | MR 2719575 | Zbl 1266.11121

[3] —, « Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields », J. Théor. Nombres Bordeaux 23 (2011), no. 3, p. 667-696. | Article | MR 2861080 | Zbl 1266.11131

[4] —, « Newton polygons of higher order in algebraic number theory », Trans. Amer. Math. Soc. 364 (2012), no. 1, p. 361-416. | Article | MR 2833586 | Zbl 1252.11091

[5] —, « A new computational approach to ideal theory in number fields », Found. Comput. Math. 13 (2013), no. 5, p. 729-762. | Article | MR 3105943 | Zbl 1287.11142

[6] —, « Higher Newton polygons and integral bases », J. Number Theory 147 (2015), p. 549-589. | Article | MR 3276340 | Zbl 1394.11071

[7] J. Guàrdia & E. Nart, « Genetics of polynomials over local fields », in Algorithmic arithmetic, geometry, and coding theory, Contemp. Math., vol. 637, Amer. Math. Soc., Providence, RI, 2015, p. 207-241. | Article

[8] J. Guàrdia, E. Nart & S. Pauli, « Single-factor lifting and factorization of polynomials over local fields », J. Symbolic Comput. 47 (2012), no. 11, p. 1318-1346. | Article | MR 2927133 | Zbl 1262.11106

[9] S. MacLane, « A construction for prime ideals as absolute values of an algebraic field », Duke Math. J. 2 (1936), no. 3, p. 492-510. | Article | MR 1545943 | Zbl 0015.05801

[10] —, « A construction for absolute values in polynomial rings », Trans. Amer. Math. Soc. 40 (1936), no. 3, p. 363-395. | Article | MR 1501879 | Zbl 0015.29202

[11] J. Montes, « Polígonos de Newton de orden superior y aplicaciones aritméticas », PhD Thesis, Universitat de Barcelona(Spain), 1999.

[12] E. Nart, « Local computation of differents and discriminants », Math. Comp. 83 (2014), no. 287, p. 1513-1534. | Article | MR 3167470 | Zbl 1330.11082

[13] K. Okutsu, « Construction of integral basis. I, II », Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 1 and 2, p. 47-49 and 87-89. | Article | MR 651298 | Zbl 0522.13004

[14] Ø. Ore, « Zur Theorie der Algebraischen Körper », Acta Math. 44 (1923), no. 1, p. 219-314. | Article | Zbl 49.0698.04

[15] —, « Newtonsche Polygone in der Theorie der algebraischen Körper », Math. Ann. 99 (1928), no. 1, p. 84-117. | Article | Zbl 54.0191.02

[16] M. Vaquié, « Extension d’une valuation », Trans. Amer. Math. Soc. 359 (2007), no. 7, p. 3439-3481 (electronic). | Article | MR 2299463 | Zbl 1121.13006

Cité par Sources :