Various theorems in elementary -adic analysis, commonly proved only for and summarized in [4], are generalized to any local field, using the concept of a Mahler basis. In the last section we explain the relation of these results to the work [10]. The paper is largely self-contained.
Divers théorèmes d’analyse -adique élémentaires, souvent prouvés uniquement sur (cf. [4]), sont généralisés à tout corps local, avec l’aide de la notion de base de Mahler. Dans la dernière section nous expliquons la relation entre nos résultats et ceux de [10].
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.955
Keywords: Mahler’s theorem, Amice transform, locally analytic distributions, Lubin-Tate groups
@article{JTNB_2016__28_3_597_0, author = {Ehud de Shalit}, title = {Mahler bases and elementary $p$-adic analysis}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {597--620}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {3}, year = {2016}, doi = {10.5802/jtnb.955}, zbl = {1409.11113}, mrnumber = {3610689}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.955/} }
TY - JOUR AU - Ehud de Shalit TI - Mahler bases and elementary $p$-adic analysis JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 597 EP - 620 VL - 28 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.955/ DO - 10.5802/jtnb.955 LA - en ID - JTNB_2016__28_3_597_0 ER -
%0 Journal Article %A Ehud de Shalit %T Mahler bases and elementary $p$-adic analysis %J Journal de théorie des nombres de Bordeaux %D 2016 %P 597-620 %V 28 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.955/ %R 10.5802/jtnb.955 %G en %F JTNB_2016__28_3_597_0
Ehud de Shalit. Mahler bases and elementary $p$-adic analysis. Journal de théorie des nombres de Bordeaux, Volume 28 (2016) no. 3, pp. 597-620. doi : 10.5802/jtnb.955. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.955/
[1] Y. Amice, « Interpolation -adique », Bull. Soc. Math. France 92 (1964), p. 117-180. | DOI
[2] D. Barsky, « Fonctions -lipschitziennes sur un anneau local et polynômes à valeurs entières », Bull. Soc. Math. France 101 (1973), p. 397-411. | DOI | Zbl
[3] J.-L. Chabert & P.-J. Cahen, « Old problems and new questions around integer-valued polynomials and factorial sequences », in Multiplicative ideal theory in commutative algebra, Springer, New York, 2006, p. 89-108. | DOI | Zbl
[4] P. Colmez, « Fonctions d’une variable -adique », Astérisque (2010), no. 330, p. 13-59. | Numdam
[5] J. Lubin & J. Tate, « Formal complex multiplication in local fields », Ann. of Math. (2) 81 (1965), p. 380-387. | DOI | MR | Zbl
[6] K. Mahler, « An interpolation series for continuous functions of a -adic variable », J. Reine Angew. Math. 199 (1958), p. 23-34. | DOI | MR | Zbl
[7] P. Roquette, Analytic theory of elliptic functions over local fields, Hamburger Mathematische Einzelschriften (N.F.), Heft 1, Vandenhoeck & Ruprecht, Göttingen, 1970, 90 pages. | Zbl
[8] W. H. Schikhof, Ultrametric calculus, Cambridge Studies in Advanced Mathematics, vol. 4, Cambridge University Press, Cambridge, 1984, An introduction to -adic analysis, viii+306 pages. | Zbl
[9] P. Schneider, Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002, vi+156 pages. | DOI | MR | Zbl
[10] P. Schneider & J. Teitelbaum, « -adic Fourier theory », Doc. Math. 6 (2001), p. 447-481 (electronic). | Zbl
[11] E. de Shalit & E. Iceland, « Integer valued polynomials and Lubin-Tate formal groups », J. Number Theory 129 (2009), no. 3, p. 632-639. | DOI | MR | Zbl
[12] J. T. Tate, « -divisible groups », in Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, p. 158-183. | DOI
Cited by Sources: