Dans un article précédent, nous avons montré l’existence d’une suite
Dans le présent travail, nous prouvons un résultat complémentaire montrant que tout comportement limsup prescrit dans la LIL est possible pour des suites avec sauts bornés. Plus précisément, nous montrons que pour tout nombre réel
In an earlier paper we proved that there exists a sequence
In the present paper we prove a complementary results showing that any prescribed limsup-behavior in the LIL is possible for sequences with bounded gaps. More precisely, we show that for any real number
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.945
Mots-clés : Law of the iterated logarithm, lacunary trigonometric series, metric discrepancy theory, probabilistic methods
Christoph Aistleitner 1 ; Katusi Fukuyama 1
@article{JTNB_2016__28_2_391_0, author = {Christoph Aistleitner and Katusi Fukuyama}, title = {On the law of the iterated logarithm for trigonometric series with bounded gaps {II}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {391--416}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {2}, year = {2016}, doi = {10.5802/jtnb.945}, zbl = {1372.11080}, mrnumber = {3509716}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.945/} }
TY - JOUR AU - Christoph Aistleitner AU - Katusi Fukuyama TI - On the law of the iterated logarithm for trigonometric series with bounded gaps II JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 391 EP - 416 VL - 28 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.945/ DO - 10.5802/jtnb.945 LA - en ID - JTNB_2016__28_2_391_0 ER -
%0 Journal Article %A Christoph Aistleitner %A Katusi Fukuyama %T On the law of the iterated logarithm for trigonometric series with bounded gaps II %J Journal de théorie des nombres de Bordeaux %D 2016 %P 391-416 %V 28 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.945/ %R 10.5802/jtnb.945 %G en %F JTNB_2016__28_2_391_0
Christoph Aistleitner; Katusi Fukuyama. On the law of the iterated logarithm for trigonometric series with bounded gaps II. Journal de théorie des nombres de Bordeaux, Tome 28 (2016) no. 2, pp. 391-416. doi : 10.5802/jtnb.945. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.945/
[1] C. Aistleitner & I. Berkes, « Probability and metric discrepancy theory », Stoch. Dyn. 11 (2011), no. 1, p. 183-207. | DOI | MR | Zbl
[2] C. Aistleitner, I. Berkes & K. Seip, « GCD sums from Poisson integrals and systems of dilated functions », J. Eur. Math. Soc. (JEMS) 17 (2015), no. 6, p. 1517-1546. | DOI | MR | Zbl
[3] V. I. Arnolʼd, « To what extent are arithmetic progressions of fractional parts random? », Uspekhi Mat. Nauk 63 (2008), no. 2(380), p. 5-20. | DOI
[4] R. C. Baker, « Metric number theory and the large sieve », J. London Math. Soc. (2) 24 (1981), no. 1, p. 34-40. | DOI | MR | Zbl
[5] I. Berkes, « A central limit theorem for trigonometric series with small gaps », Z. Wahrsch. Verw. Gebiete 47 (1979), no. 2, p. 157-161. | DOI | MR | Zbl
[6] —, « Probability theory of the trigonometric system », in Limit theorems in probability and statistics (Pécs, 1989), Colloq. Math. Soc. János Bolyai, vol. 57, North-Holland, Amsterdam, 1990, p. 35-58. | Zbl
[7] I. Berkes & W. Philipp, « The size of trigonometric and Walsh series and uniform distribution
[8] S. G. Bobkov & F. Götze, « Concentration inequalities and limit theorems for randomized sums », Probab. Theory Related Fields 137 (2007), no. 1-2, p. 49-81. | DOI | MR | Zbl
[9] P. Borwein & R. Lockhart, « The expected
[10] M. Drmota & R. F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Mathematics, vol. 1651, Springer-Verlag, Berlin, 1997, xiv+503 pages. | Zbl
[11] U. Einmahl & D. M. Mason, « Some universal results on the behavior of increments of partial sums », Ann. Probab. 24 (1996), no. 3, p. 1388-1407. | DOI | MR | Zbl
[12] T. Erdélyi, « Polynomials with Littlewood-type coefficient constraints », in Approximation theory, X (St. Louis, MO, 2001), Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002, p. 153-196. | Zbl
[13] K. Fukuyama, « A law of the iterated logarithm for discrepancies: non-constant limsup », Monatsh. Math. 160 (2010), no. 2, p. 143-149. | DOI | MR | Zbl
[14] —, « Pure Gaussian limit distributions of trigonometric series with bounded gaps », Acta Math. Hungar. 129 (2010), no. 4, p. 303-313. | DOI | MR | Zbl
[15] —, « A central limit theorem to trigonometric series with bounded gaps », Probab. Theory Related Fields 149 (2011), no. 1-2, p. 139-148. | DOI | MR | Zbl
[16] V. F. Gapoškin, « Lacunary series and independent functions », Uspehi Mat. Nauk 21 (1966), no. 6 (132), p. 3-82. | DOI | MR
[17] L. Gordon, M. F. Schilling & M. S. Waterman, « An extreme value theory for long head runs », Probab. Theory Relat. Fields 72 (1986), no. 2, p. 279-287. | DOI | MR | Zbl
[18] R. Kaas & J. M. Buhrman, « Mean, median and mode in binomial distributions », Statist. Neerlandica 34 (1980), no. 1, p. 13-18. | DOI | MR | Zbl
[19] M. Kac, « Probability methods in some problems of analysis and number theory », Bull. Amer. Math. Soc. 55 (1949), p. 641-665. | DOI | MR | Zbl
[20] J.-P. Kahane, « Lacunary Taylor and Fourier series », Bull. Amer. Math. Soc. 70 (1964), p. 199-213. | DOI | MR
[21] L. Kuipers & H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974, Pure and Applied Mathematics, xiv+390 pages. | Zbl
[22] W. Philipp, « Limit theorems for lacunary series and uniform distribution
[23] T. Šalát, « On subseries », Math. Z. 85 (1964), p. 209-225. | DOI | MR | Zbl
[24] R. Salem & A. Zygmund, « Some properties of trigonometric series whose terms have random signs », Acta Math. 91 (1954), p. 245-301. | DOI | MR | Zbl
[25] P. Schatte, « On a law of the iterated logarithm for sums
[26] J. Túri, « Limit theorems for the longest run », Ann. Math. Inform. 36 (2009), p. 133-141. | Zbl
[27] M. Weber, « Discrepancy of randomly sampled sequences of reals », Math. Nachr. 271 (2004), p. 105-110. | DOI | MR | Zbl
- Statistical independence in mathematics – the key to a Gaussian law, Mathematische Semesterberichte, Volume 68 (2021) no. 1, pp. 69-104 | DOI:10.1007/s00591-020-00287-z | Zbl:1465.60023
- On the law of the iterated logarithm for random exponential sums, Transactions of the American Mathematical Society, Volume 371 (2019) no. 5, pp. 3259-3280 | DOI:10.1090/tran/7415 | Zbl:1412.42021
- A metric discrepancy result with given speed, Acta Mathematica Hungarica, Volume 151 (2017) no. 1, pp. 199-216 | DOI:10.1007/s10474-016-0658-2 | Zbl:1399.11128
Cité par 3 documents. Sources : zbMATH