Let
Soit
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.942
Mots-clés : Normal integral basis, unramified quadratic extension, cyclotomic
Humio Ichimura 1 ; Hiroki Sumida-Takahashi 2
@article{JTNB_2016__28_2_325_0, author = {Humio Ichimura and Hiroki Sumida-Takahashi}, title = {Normal integral basis of an unramified quadratic extension over a cyclotomic $\mathbb{Z}_2$-extension}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {325--345}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {2}, year = {2016}, doi = {10.5802/jtnb.942}, zbl = {1358.11120}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.942/} }
TY - JOUR AU - Humio Ichimura AU - Hiroki Sumida-Takahashi TI - Normal integral basis of an unramified quadratic extension over a cyclotomic $\mathbb{Z}_2$-extension JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 325 EP - 345 VL - 28 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.942/ DO - 10.5802/jtnb.942 LA - en ID - JTNB_2016__28_2_325_0 ER -
%0 Journal Article %A Humio Ichimura %A Hiroki Sumida-Takahashi %T Normal integral basis of an unramified quadratic extension over a cyclotomic $\mathbb{Z}_2$-extension %J Journal de théorie des nombres de Bordeaux %D 2016 %P 325-345 %V 28 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.942/ %R 10.5802/jtnb.942 %G en %F JTNB_2016__28_2_325_0
Humio Ichimura; Hiroki Sumida-Takahashi. Normal integral basis of an unramified quadratic extension over a cyclotomic $\mathbb{Z}_2$-extension. Journal de théorie des nombres de Bordeaux, Tome 28 (2016) no. 2, pp. 325-345. doi : 10.5802/jtnb.942. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.942/
[1] KANT/Kash3, http://page.math.tu-berlin.de/~kant/kash.html.
[2] UBASIC, http://www.rkmath.rikkyo.ac.jp/~kida/ubasic.htm (in Japanese). | Zbl
[3] J. Brinkhuis, « Unramified abelian extensions of CM-fields and their Galois module structure », Bull. London Math. Soc. 24 (1992), no. 3, p. 236-242. | DOI | Zbl
[4] A. Brumer, « On the units of algebraic number fields », Mathematika 14 (1967), p. 121-124. | DOI | MR | Zbl
[5] L. N. Childs, « The group of unramified Kummer extensions of prime degree », Proc. London Math. Soc. (3) 35 (1977), no. 3, p. 407-422. | DOI | MR | Zbl
[6] A. Fröhlich & M. J. Taylor, Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993, xiv+355 pages. | Zbl
[7] T. Fukuda, « Remarks on
[8] R. Gillard, « Unités cyclotomiques, unités semi-locales et
[9] M.-N. Gras, « Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de
[10] H. Ichimura, « On
[11] —, « On a normal integral bases problem over cyclotomic
[12] —, « Class number parity of a quadratic twist of a cyclotomic field of prime power conductor », Osaka J. Math. 50 (2013), no. 2, p. 563-572.
[13] —, « Semi-local units at
[14] —, « On a duality of Gras between totally positive and primary cyclotomic units », Math. J. Okayama Univ. 58 (2016), p. 125-132. | Zbl
[15] H. Ichimura, S. Nakajima & H. Sumida-Takahashi, « On the Iwasawa lambda invariant of an imaginary abelian field of conductor
[16] H. Ichimura & H. Sumida, « A note on integral bases of unramified cyclic extensions of prime degree. II », Manuscripta Math. 104 (2001), no. 2, p. 201-210. | DOI | MR | Zbl
[17] F. Kawamoto & Y. Odai, « Normal integral bases of
[18] J. S. Kraft & R. Schoof, « Computing Iwasawa modules of real quadratic number fields », Compositio Math. 97 (1995), no. 1-2, p. 135-155, Special issue in honour of Frans Oort. | Zbl
[19] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, third ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004, xii+708 pages. | DOI | MR | Zbl
[20] B. Oriat, « Relation entre les
[21] W. Sinnott, « On the Stickelberger ideal and the circular units of an abelian field », Invent. Math. 62 (1980/81), no. 2, p. 181-234. | DOI | MR | Zbl
[22] A. Srivastav & S. Venkataraman, « Relative Galois module structure of quadratic extensions », Indian J. Pure Appl. Math. 25 (1994), no. 5, p. 473-488. | Zbl
[23] —, « Unramified quadratic extensions of real quadratic fields, normal integral bases, and
[24] M. Taylor, « Galois module structure of classgroups and units », Mathematika 22 (1975), no. 2, p. 156-160. | DOI | MR | Zbl
[25] —, « The Galois module structure of certain arithmetic principal homogeneous spaces », J. Algebra 153 (1992), no. 1, p. 203-214. | DOI | MR | Zbl
[26] L. C. Washington, Introduction to cyclotomic fields, second ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997, xiv+487 pages. | DOI | Zbl
Cité par Sources :