Nous calculons explicitement les valeurs spéciales de la fonction
We explicitly compute the special values of the standard
Mots-clés : special values of
Anh Tuan Do 1 ; Kirill Vankov 1
@article{JTNB_2015__27_3_727_0, author = {Anh Tuan Do and Kirill Vankov}, title = {On special values of standard $L$-functions of {Siegel} cusp eigenforms of genus~3}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {727--744}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {3}, year = {2015}, doi = {10.5802/jtnb.921}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.921/} }
TY - JOUR AU - Anh Tuan Do AU - Kirill Vankov TI - On special values of standard $L$-functions of Siegel cusp eigenforms of genus 3 JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 727 EP - 744 VL - 27 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.921/ DO - 10.5802/jtnb.921 LA - en ID - JTNB_2015__27_3_727_0 ER -
%0 Journal Article %A Anh Tuan Do %A Kirill Vankov %T On special values of standard $L$-functions of Siegel cusp eigenforms of genus 3 %J Journal de théorie des nombres de Bordeaux %D 2015 %P 727-744 %V 27 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.921/ %R 10.5802/jtnb.921 %G en %F JTNB_2015__27_3_727_0
Anh Tuan Do; Kirill Vankov. On special values of standard $L$-functions of Siegel cusp eigenforms of genus 3. Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 3, pp. 727-744. doi : 10.5802/jtnb.921. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.921/
[1] S. Böcherer, « Über die Funktionalgleichung automorpher
[2] F. Chiera & K. Vankov, « On special values of spinor L-functions of Siegel cusp eigenforms of genus 3 », , 2008. | arXiv | DOI | MR
[3] M. Courtieu & A. Panchishkin, Non-Archimedean
[4] P. Deligne, « Valeurs de fonctions
[5] A. T. Do & K. Vankov, « Supplementary materials for the present article », DoVankov-suppl.pdf. | DOI
[6] B. H. Gross & D. B. Zagier, « Heegner points and derivatives of
[7] T. Ikeda, « Pullback of the lifting of elliptic cusp forms and Miyawaki’s conjecture », Duke Math. J. 131 (2006), no. 3, p. 469-497. | MR | Zbl
[8] W. C. W. Li, «
[9] T. Miyake, Modular forms, english ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006, Translated from the 1976 Japanese original by Yoshitaka Maeda, x+335 pages. | MR | Zbl
[10] I. Miyawaki, « Numerical examples of Siegel cusp forms of degree
[11] A. A. Panchishkin, « Two variable
[12] R. A. Rankin, « Contributions to the theory of Ramanujan’s function
[13] J.-P. Serre, « Formes modulaires et fonctions zêta
[14] G. Shimura, « The special values of the zeta functions associated with cusp forms », Comm. Pure Appl. Math. 29 (1976), no. 6, p. 783-804. | MR | Zbl
[15] —, Elementary Dirichlet series and modular forms, Springer Monographs in Mathematics, Springer, New York, 2007, viii+147 pages. | DOI | MR
[16] J. Sturm, « Projections of
[17] D. Zagier, « Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields », in Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Springer, Berlin, 1977, p. 105-169. Lecture Notes in Math., Vol. 627. | MR | Zbl
Cité par Sources :