Let
Soient
S. Mohammad Hadi Hedayatzadeh 1
@article{JTNB_2015__27_1_77_0, author = {S. Mohammad Hadi Hedayatzadeh}, title = {Exterior {Powers} of {Lubin-Tate} {Groups}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {77--148}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {1}, year = {2015}, doi = {10.5802/jtnb.895}, mrnumber = {3346966}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.895/} }
TY - JOUR AU - S. Mohammad Hadi Hedayatzadeh TI - Exterior Powers of Lubin-Tate Groups JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 77 EP - 148 VL - 27 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.895/ DO - 10.5802/jtnb.895 LA - en ID - JTNB_2015__27_1_77_0 ER -
%0 Journal Article %A S. Mohammad Hadi Hedayatzadeh %T Exterior Powers of Lubin-Tate Groups %J Journal de théorie des nombres de Bordeaux %D 2015 %P 77-148 %V 27 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.895/ %R 10.5802/jtnb.895 %G en %F JTNB_2015__27_1_77_0
S. Mohammad Hadi Hedayatzadeh. Exterior Powers of Lubin-Tate Groups. Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 1, pp. 77-148. doi : 10.5802/jtnb.895. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.895/
[1] T. Ahsendorf,
[2] G.W. Anderson,
[3] V. Buchstaber and A. Lazarev, Dieudonné modules and
[4] C.-L. Chai, The group action on the closed fiber of the Lubin-Tate moduli space, Duke Math. J. 82, 3 (1996), 725–754. | MR | Zbl
[5] M. Chen, Le Morphisme Déterminant Pour Les Espaces De Modules De Groupes P-Divisibles, PhD thesis, Université Paris XI, Paris, 2011.
[6] A.J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math. 82, (1995), 5–96 (1996). | MR | Zbl
[7] M. Demazure, Lectures on
[8] M. Demazure and P. Gabriel, Groupes algébriques, Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris, 1970. Avec un appendice ıt Corps de classes local par Michiel Hazewinkel. | Zbl
[9] V.G. Drinfeld, Coverings of
[10] A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math., 8, (1961), 222. | EuDML | Zbl
[11] M.H. Hedayatzadeh, Exterior powers of Barsotti-Tate groups, Preprint, available at . | arXiv
[12] M.H. Hedayatzadeh, Exterior powers of
[13] M.J. Hopkins, M. J., and B.H. Gross, Equivariant vector bundles on the Lubin-Tate moduli space, in Topology and representation theory (Evanston, IL, 1992), Contemp. Math. Amer. Math. Soc. 158, Providence, RI, (1994), 23–88. | MR | Zbl
[14] L. Illusie, Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Astérisque, 127, (1985), 151–198. Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). | MR | Zbl
[15] G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete 39, 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2000. | MR | Zbl
[16] H. Matsumura, Commutative ring theory, second ed., Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, (1989). Translated from the Japanese by M. Reid. | MR | Zbl
[17] W. Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Mathematics, 264 Springer-Verlag, Berlin (1972). | MR | Zbl
[18] J.S. Milne, Étale cohomology, Princeton Mathematical Series bf 33, Princeton University Press, Princeton, N.J., (1980). | MR | Zbl
[19] D. Mumford, Bi-extensions of formal groups, in Algebraic Geometry Internat. Colloq., Tata Inst. Fund. Res., (Bombay, 1968). Oxford Univ. Press, London, 1969, 307–322. | MR | Zbl
[20] D.C. Ravenel and W.S. Wilson, The Morava
[21] P. Scholze and J. Weinstein, Moduli of
[22] T. Wedhorn, The dimension of Oort strata of Shimura varieties of PEL-type, in Moduli of abelian varieties (Texel Island, 1999), Progr. Math. 195, Birkhäuser, Basel, (2001), 441–471. | MR | Zbl
[23] J. Weinstein, Formal vector spaces over a local field of positive characteristic, Preprint, available at http://math.bu.edu/people/jsweinst/.
[24] T. Zink, The display of a formal
Cité par Sources :