Criteria for Irreducibility of mod p Representations of Frey Curves
Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 1, pp. 67-76.

Let K be a totally real Galois number field and let be a set of elliptic curves over K. We give sufficient conditions for the existence of a finite computable set of rational primes 𝒫 such that for p𝒫 and E, the representation Gal(K ¯/K)Aut(E[p]) is irreducible. Our sufficient conditions are often satisfied for Frey elliptic curves associated to solutions of Diophantine equations; in that context, the irreducibility of the mod p representation is a hypothesis needed for applying level-lowering theorems. We illustrate our approach by improving on a result of [6] for Fermat-type equations of signature (13,13,p).

Soit K un corps de nombres galoisien totalement réel, et soit un ensemble de courbes elliptiques sur K. Nous donnons des conditions suffisantes pour l’existence d’un ensemble calculable de nombres premiers 𝒫 tels que, pour p𝒫 et E, la représentation Gal(K ¯/K)Aut(E[p]) soit irréductible. Nos conditions sont en général satisfaites par les courbes de Frey associées à des solutions d’équations diophantiennes. Dans ce contexte, l’irréductibilité de la représentation mod p est une hypothèse requise pour l’application des théorèmes d’abaissement du niveau. Comme illustration de notre approche, nous avons amélioré le résultat de [6] pour les équations de Fermat de signature (13,13,p).

DOI: 10.5802/jtnb.894
Classification: 11F80, 11G05
Nuno Freitas 1; Samir Siksek 2

1 Mathematisches Institut Universität Bayreuth 95440 Bayreuth, Germany
2 Mathematics Institute University of Warwick CV4 7AL United Kingdom
@article{JTNB_2015__27_1_67_0,
     author = {Nuno Freitas and Samir Siksek},
     title = {Criteria for {Irreducibility} of mod $p$ {Representations} of {Frey} {Curves}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {67--76},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {27},
     number = {1},
     year = {2015},
     doi = {10.5802/jtnb.894},
     mrnumber = {3346965},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.894/}
}
TY  - JOUR
AU  - Nuno Freitas
AU  - Samir Siksek
TI  - Criteria for Irreducibility of mod $p$ Representations of Frey Curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2015
SP  - 67
EP  - 76
VL  - 27
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.894/
DO  - 10.5802/jtnb.894
LA  - en
ID  - JTNB_2015__27_1_67_0
ER  - 
%0 Journal Article
%A Nuno Freitas
%A Samir Siksek
%T Criteria for Irreducibility of mod $p$ Representations of Frey Curves
%J Journal de théorie des nombres de Bordeaux
%D 2015
%P 67-76
%V 27
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.894/
%R 10.5802/jtnb.894
%G en
%F JTNB_2015__27_1_67_0
Nuno Freitas; Samir Siksek. Criteria for Irreducibility of mod $p$ Representations of Frey Curves. Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 1, pp. 67-76. doi : 10.5802/jtnb.894. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.894/

[1] M.A. Bennett, I. Chen, S.R. Dahmen and S. Yazdani, Generalized Fermat equations: a miscellany, preprint, (2013). | MR

[2] M.A. Bennett, S.R. Dahmen, M. Mignotte and S. Siksek, Shifted powers in binary recurrence sequences, Mathematical Proceedings Cambridge Philosophical Society, 158, (2015), 305–329. | MR

[3] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over : wild 3-adic exercises, Journal of the American Mathematical Society 14, (2001), 843–939. | MR | Zbl

[4] H. Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM 240, Springer-Verlag, (2007). | MR | Zbl

[5] A. David, Caractère d’isogénie et critéres d’irréductibilité, arXiv:1103.3892v2.

[6] L. Dieulefait and N. Freitas, Fermat-type equations of signature (13,13,p) via Hilbert cuspforms, Math. Ann. 357, 3 (2013), 987–1004. | MR

[7] N. Freitas, Recipes to Fermat-type equations of the form x r +y r =Cz p , Mathematische Zeitschrift, 279, (2015), 605–639. | MR

[8] N. Freitas and S. Siksek, The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields, Compositio Mathematica, to appear.

[9] N. Freitas, B.V. Le Hung and S. Siksek, Elliptic curves over real quadratic fields are modular, Inventiones Mathematicae, to appear.

[10] K. Fujiwara, Level optimisation in the totally real case, arXiv:math/0602586v1.

[11] F. Jarvis, Level lowering for modular mod representations over totally real fields, Math.Ann. 313, 1 (1999), 141–160. | MR | Zbl

[12] F. Jarvis, Correspondences on Shimura curves and Mazur’s principle at p, Pacific J. Math., 213, 2 (2004), 267–280. | MR | Zbl

[13] A. Kraus, Courbes elliptiques semi-stables et corps quadratiques, Journal of Number Theory 60, (1996), 245–253. | MR | Zbl

[14] A. Kraus, Courbes elliptiques semi-stables sur les corps de nombres, International Journal of Number Theory 3, (2007), 611–633. | MR | Zbl

[15] B. Mazur, Rational isogenies of prime degree, Inventiones Math. 44, (1978), 129–162. | MR | Zbl

[16] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent.Math. 124, (1996), 437–449. | MR | Zbl

[17] F. Momose, Isogenies of prime degree over number fields, Compositio Mathematica, 97, (1995), 329–348. | Numdam | MR | Zbl

[18] A. Rajaei, On the levels of mod Hilbert modular forms, J. Reine Angew. Math., 537, (2001), 33–65. | MR | Zbl

[19] K.A. Ribet, On modular representations of Gal( ¯/) arising from modular forms, Inventiones Math., 100, (1990), 431–476. | MR | Zbl

[20] J.-P. Serre, Properiétés galoisiennes des points d’ordre fini des courbes elliptiques, Inventiones Math., 15, (1972), 259–331. | MR | Zbl

[21] S. Siksek, The modular approach to Diophantine equations, chapter 15 of [4].

[22] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Annals of Mathematics 141, 3 (1995), 553–572. | MR | Zbl

[23] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Annals of Mathematics 141, 3 (1995), 443–551. | MR | Zbl

Cited by Sources: