Let be a totally real Galois number field and let be a set of elliptic curves over . We give sufficient conditions for the existence of a finite computable set of rational primes such that for and , the representation is irreducible. Our sufficient conditions are often satisfied for Frey elliptic curves associated to solutions of Diophantine equations; in that context, the irreducibility of the mod representation is a hypothesis needed for applying level-lowering theorems. We illustrate our approach by improving on a result of [6] for Fermat-type equations of signature .
Soit un corps de nombres galoisien totalement réel, et soit un ensemble de courbes elliptiques sur . Nous donnons des conditions suffisantes pour l’existence d’un ensemble calculable de nombres premiers tels que, pour et , la représentation soit irréductible. Nos conditions sont en général satisfaites par les courbes de Frey associées à des solutions d’équations diophantiennes. Dans ce contexte, l’irréductibilité de la représentation mod est une hypothèse requise pour l’application des théorèmes d’abaissement du niveau. Comme illustration de notre approche, nous avons amélioré le résultat de [6] pour les équations de Fermat de signature .
@article{JTNB_2015__27_1_67_0, author = {Nuno Freitas and Samir Siksek}, title = {Criteria for {Irreducibility} of mod $p$ {Representations} of {Frey} {Curves}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {67--76}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {1}, year = {2015}, doi = {10.5802/jtnb.894}, mrnumber = {3346965}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.894/} }
TY - JOUR AU - Nuno Freitas AU - Samir Siksek TI - Criteria for Irreducibility of mod $p$ Representations of Frey Curves JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 67 EP - 76 VL - 27 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.894/ DO - 10.5802/jtnb.894 LA - en ID - JTNB_2015__27_1_67_0 ER -
%0 Journal Article %A Nuno Freitas %A Samir Siksek %T Criteria for Irreducibility of mod $p$ Representations of Frey Curves %J Journal de théorie des nombres de Bordeaux %D 2015 %P 67-76 %V 27 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.894/ %R 10.5802/jtnb.894 %G en %F JTNB_2015__27_1_67_0
Nuno Freitas; Samir Siksek. Criteria for Irreducibility of mod $p$ Representations of Frey Curves. Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 1, pp. 67-76. doi : 10.5802/jtnb.894. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.894/
[1] M.A. Bennett, I. Chen, S.R. Dahmen and S. Yazdani, Generalized Fermat equations: a miscellany, preprint, (2013). | MR
[2] M.A. Bennett, S.R. Dahmen, M. Mignotte and S. Siksek, Shifted powers in binary recurrence sequences, Mathematical Proceedings Cambridge Philosophical Society, 158, (2015), 305–329. | MR
[3] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over : wild -adic exercises, Journal of the American Mathematical Society 14, (2001), 843–939. | MR | Zbl
[4] H. Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM 240, Springer-Verlag, (2007). | MR | Zbl
[5] A. David, Caractère d’isogénie et critéres d’irréductibilité, arXiv:1103.3892v2.
[6] L. Dieulefait and N. Freitas, Fermat-type equations of signature via Hilbert cuspforms, Math. Ann. 357, 3 (2013), 987–1004. | MR
[7] N. Freitas, Recipes to Fermat-type equations of the form , Mathematische Zeitschrift, 279, (2015), 605–639. | MR
[8] N. Freitas and S. Siksek, The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields, Compositio Mathematica, to appear.
[9] N. Freitas, B.V. Le Hung and S. Siksek, Elliptic curves over real quadratic fields are modular, Inventiones Mathematicae, to appear.
[10] K. Fujiwara, Level optimisation in the totally real case, arXiv:math/0602586v1.
[11] F. Jarvis, Level lowering for modular mod representations over totally real fields, Math.Ann. 313, 1 (1999), 141–160. | MR | Zbl
[12] F. Jarvis, Correspondences on Shimura curves and Mazur’s principle at , Pacific J. Math., 213, 2 (2004), 267–280. | MR | Zbl
[13] A. Kraus, Courbes elliptiques semi-stables et corps quadratiques, Journal of Number Theory 60, (1996), 245–253. | MR | Zbl
[14] A. Kraus, Courbes elliptiques semi-stables sur les corps de nombres, International Journal of Number Theory 3, (2007), 611–633. | MR | Zbl
[15] B. Mazur, Rational isogenies of prime degree, Inventiones Math. 44, (1978), 129–162. | MR | Zbl
[16] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent.Math. 124, (1996), 437–449. | MR | Zbl
[17] F. Momose, Isogenies of prime degree over number fields, Compositio Mathematica, 97, (1995), 329–348. | Numdam | MR | Zbl
[18] A. Rajaei, On the levels of mod Hilbert modular forms, J. Reine Angew. Math., 537, (2001), 33–65. | MR | Zbl
[19] K.A. Ribet, On modular representations of arising from modular forms, Inventiones Math., 100, (1990), 431–476. | MR | Zbl
[20] J.-P. Serre, Properiétés galoisiennes des points d’ordre fini des courbes elliptiques, Inventiones Math., 15, (1972), 259–331. | MR | Zbl
[21] S. Siksek, The modular approach to Diophantine equations, chapter 15 of [4].
[22] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Annals of Mathematics 141, 3 (1995), 553–572. | MR | Zbl
[23] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Annals of Mathematics 141, 3 (1995), 443–551. | MR | Zbl
Cited by Sources: