In this paper we develop a general theory of metric Diophantine approximation for systems of linear forms. A new notion of ‘weak non-planarity’ of manifolds and more generally measures on the space of matrices over is introduced and studied. This notion generalizes the one of non-planarity in and is used to establish strong (Diophantine) extremality of manifolds and measures in . Thus our results contribute to resolving a problem stated in [20, §9.1] regarding the strong extremality of manifolds in . Beyond the above main theme of the paper, we also develop a corresponding theory of inhomogeneous and weighted Diophantine approximation. In particular, we extend the recent inhomogeneous transference results of the first named author and Velani [11] and use them to bring the inhomogeneous theory in balance with its homogeneous counterpart.
Dans cet article, nous développons la théorie métrique générale des approximations diophantiennes pour les systèmes de formes linéaires. Nous introduisons et puis étudions une nouvelle notion de « non-planéité faible » des variétés, et plus généralement des mesures sur l’espace des matrices avec coefficients dans . Cette notion généralise celle de non-planéité dans . Nous utilisons cette notion pour établir une extrémalité forte (au sens diophantien) des variétés et des mesures de . Ainsi, nos résultats contribuent à la résolution d’un problème mentionné dans [20, §9.1] concernant l’extrémalité forte des variétés dans . Outre ce thème principal, nous développons aussi la théorie inhomogène et la théorie des approximations diophantiennes pondérées. En particulier, nous étendons les résultats récents sur le principe de transfert inhomogène du premier auteur et de Velani [11] et utilisons ce nouveau résultat pour mettre la théorie inhomogène en équilibre avec son homologue homogène.
@article{JTNB_2015__27_1_1_0, author = {Victor Beresnevich and Dmitry Kleinbock and Gregory Margulis}, title = {Non-planarity and metric {Diophantine} approximation for systems of linear forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--31}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {1}, year = {2015}, doi = {10.5802/jtnb.890}, zbl = {06554394}, mrnumber = {3346961}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.890/} }
TY - JOUR AU - Victor Beresnevich AU - Dmitry Kleinbock AU - Gregory Margulis TI - Non-planarity and metric Diophantine approximation for systems of linear forms JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 1 EP - 31 VL - 27 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.890/ DO - 10.5802/jtnb.890 LA - en ID - JTNB_2015__27_1_1_0 ER -
%0 Journal Article %A Victor Beresnevich %A Dmitry Kleinbock %A Gregory Margulis %T Non-planarity and metric Diophantine approximation for systems of linear forms %J Journal de théorie des nombres de Bordeaux %D 2015 %P 1-31 %V 27 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.890/ %R 10.5802/jtnb.890 %G en %F JTNB_2015__27_1_1_0
Victor Beresnevich; Dmitry Kleinbock; Gregory Margulis. Non-planarity and metric Diophantine approximation for systems of linear forms. Journal de théorie des nombres de Bordeaux, Volume 27 (2015) no. 1, pp. 1-31. doi : 10.5802/jtnb.890. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.890/
[1] A. Baker, Transcendental number theory, Cambridge University Press, London, 1975. | MR | Zbl
[2] V. Beresnevich, A Groshev type theorem for convergence on manifolds, Acta Math. Hungar.,94, 1-2 (2002), 99–130. | MR | Zbl
[3] V. Beresnevich, Rational points near manifolds and metric Diophantine approximation, Ann. of Math. (2), 175, (2012), 187–235. | MR | Zbl
[4] V. Beresnevich, V. Bernik and M. Dodson, On the Hausdorff dimension of sets of well-approximable points on nondegenerate curves, Dokl. Nats. Akad. Nauk Belarusi 46, 6 (2002), 18–20, (In Russian). | MR | Zbl
[5] V. Beresnevich, V. Bernik, D. Kleinbock and G. A. Margulis, Metric Diophantine approximation: the Khintchine-Groshev theorem for nondegenerate manifolds, Moscow Math. J. 2, 2 (2002), 203–225. | MR | Zbl
[6] V. Beresnevich, D. Dickinson and S. Velani, Measure theoretic laws for lim sup sets, Mem. Amer. Math. Soc. 179, 846 (2006), x+91. | MR | Zbl
[7] V. Beresnevich, D. Dickinson and S. Velani, Diophantine approximation on planar curves and the distribution of rational points, Ann. of Math. (2) 166, 2 (2007), 367–426, With an Appendix II by R. C. Vaughan. | MR | Zbl
[8] V. Beresnevich and S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math. (2), 164, 3 (2006), 971–992. | MR | Zbl
[9] V. Beresnevich and S. Velani, A note on simultaneous Diophantine approximation on planar curves, Math. Ann. 337, 4 (2007), 769–796. | MR | Zbl
[10] V. Beresnevich and S. Velani, Classical metric Diophantine approximation revisited: the Khintchine-Groshev theorem, Internat. Math. Res. Notices 337, 1 (2010), 69–86. | MR | Zbl
[11] V. Beresnevich and S. Velani, An inhomogeneous transference principle and Diophantine approximation, Proc. Lond. Math. Soc. (3), 101, 3 (2010), 821–851. | MR | Zbl
[12] V. Beresnevich and S. Velani, Simultaneous inhomogeneous Diophantine approximations on manifolds. (Russian) Fundam. Prikl. Mat. 16, 5 (2010), 3–17 ; translation in J. Math. Sci. (N. Y.) 180, 5 (2012), 531–541. | MR
[13] V. Bernik, An application of Hausdorff dimension in the theory of Diophantine approximation, Acta Arith. 42, 3 (1983), 219–253, (In Russian). English transl. in Amer. Math. Soc. Transl., 140 (1988), 15–44. | MR | Zbl
[14] V. Bernik, D. Kleinbock and G.A. Margulis, Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions, Internat. Math. Res. Notices (2001), 9, 453–486. | MR | Zbl
[15] V. Bernik and M. Dodson, Metric Diophantine approximation on manifolds, Cambridge Tracts in Mathematics, 137, Cambridge University Press, Cambridge, (1999). | MR | Zbl
[16] Y. Bugeaud, Multiplicative Diophantine approximation, in Dynamical systems and Diophantine approximation, Sémin. Congr. 19, (2009), 105–125. | MR | Zbl
[17] Y. Bugeaud and N. Chevallier, On simultaneous inhomogeneous Diophantine approximation, Acta Arith. 123, 2 (2006), 97–123. | MR | Zbl
[18] J.W.S. Cassels, An introduction to Diophantine Approximation, Cambridge University Press, Cambridge, (1957). | MR | Zbl
[19] H. Dickinson and M. Dodson, Extremal manifolds and Hausdorff dimension, Duke Math. J. 101, 2 (2000), 271–281. | MR | Zbl
[20] A. Gorodnik, Open problems in dynamics and related fields, J. Mod. Dyn. 1, 1 (2007), 1–35. | MR | Zbl
[21] D. Kleinbock, Extremal subspaces and their submanifolds, Geom. Funct. Anal, 13, 2 (2003), 437–466. | MR | Zbl
[22] D. Kleinbock, Baker-Sprindžuk conjectures for complex analytic manifolds, Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai, (2004), 539–553. | MR | Zbl
[23] D. Kleinbock, Diophantine exponents of measures and homogeneous dynamics, Pure Appl. Math. Q., 4, (2008), 81–97. | MR | Zbl
[24] D. Kleinbock, Quantitative nondivergence and its Diophantine applications, Homogeneous flows, moduli spaces and arithmetic. Clay Math. Proc., 10, 131–153, Amer. Math. Soc., Providence, RI, (2010). | MR | Zbl
[25] D. Kleinbock, An ‘almost all versus no’ dichotomy in homogeneous dynamics and Diophantine approximation, Geom. Dedicata 149, (2010), 205–218. | MR | Zbl
[26] D. Kleinbock, E. Lindenstrauss and B. Weiss, On fractal measures and Diophantine approximation, Selecta Math. (N.S.) 10, 4 (2004), 479–523. | MR | Zbl
[27] D. Kleinbock and G.A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2), 148, 1 (1998), 339–360. | MR | Zbl
[28] D. Kleinbock, G.A. Margulis and J. Wang, Metric Diophantine approximation for systems of linear forms via dynamics, Int. J. Number Theory 6, 5 (2010) 1139–1168. | MR | Zbl
[29] D. Kleinbock and G. Tomanov, Flows on -arithmetic homogeneous spaces and applications to metric Diophantine approximation, Comment. Math. Helv. 82, (2007), 519–581. | MR | Zbl
[30] I. Kovalevskaya, Simultaneously extremal manifolds, Mat. Zametki 41, 1 (1987), 3–8, 119. | MR | Zbl
[31] I. Kovalevskaya, Simultaneously extremal manifolds, Dokl. Akad. Nauk BSSR 31, 5 (1987), 405–408, 475–476. | MR | Zbl
[32] I. Kovalevskaya, Strongly jointly extremal manifolds, Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk (1987), no. 6, 16–19, 123–124. | MR | Zbl
[33] K. Mahler, über das Maßder Menge aller -Zahlen, Math. Ann. 106, (1932), 131–139. | MR
[34] W.M. Schmidt, Metrical theorems on fractional parts of sequences, Trans. Amer. Math. Soc. 110, (1964), 493–518. | MR | Zbl
[35] W.M. Schmidt, Diophantine Approximation, Springer-Verlag, Berlin and New York, (1980). | MR | Zbl
[36] W.M. Schmidt and Y. Wang, A note on a transference theorem of linear forms, Sci. Sinica, 22, (1979), 276–280. | MR | Zbl
[37] V.G. Sprindžuk, Mahler’s problem in the metric theory of numbers, Amer. Math. Soc. 25, Providence, RI, (1969), Translations of Mathematical Monographs. | Zbl
[38] V.G. Sprindžuk, Achievements and problems in Diophantine approximation theory, Russian Math. Surveys 35, (1980), 1–80. | MR | Zbl
Cited by Sources: