In this paper we describe the set of conjugacy classes in the group . We expand geometric Gauss Reduction Theory that solves the problem for to the multidimensional case, where -reduced Hessenberg matrices play the role of reduced matrices. Further we find complete invariants of conjugacy classes in in terms of multidimensional Klein-Voronoi continued fractions.
Dans cet article, nous décrivons l’ensemble des classes de conjugaison dans le groupe . Nous étendons la théorie de réduction de Gauss géométrique qui résout le problème pour au cas multidimensionnel, où les matrices de Hessenberg -réduites jouent le rôle de matrices réduites. Ensuite, nous trouvons des invariants complets des classes de conjugaison dans en termes fractions continues multidimensionnelles de Klein-Voronoi.
@article{JTNB_2013__25_1_99_0, author = {Oleg Karpenkov}, title = {Multidimensional {Gauss} reduction theory for conjugacy classes of $\mathrm{SL}(n,\mathbb{Z})$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {99--109}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {1}, year = {2013}, doi = {10.5802/jtnb.828}, mrnumber = {3063833}, zbl = {1273.11111}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.828/} }
TY - JOUR AU - Oleg Karpenkov TI - Multidimensional Gauss reduction theory for conjugacy classes of $\mathrm{SL}(n,\mathbb{Z})$ JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 99 EP - 109 VL - 25 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.828/ DO - 10.5802/jtnb.828 LA - en ID - JTNB_2013__25_1_99_0 ER -
%0 Journal Article %A Oleg Karpenkov %T Multidimensional Gauss reduction theory for conjugacy classes of $\mathrm{SL}(n,\mathbb{Z})$ %J Journal de théorie des nombres de Bordeaux %D 2013 %P 99-109 %V 25 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.828/ %R 10.5802/jtnb.828 %G en %F JTNB_2013__25_1_99_0
Oleg Karpenkov. Multidimensional Gauss reduction theory for conjugacy classes of $\mathrm{SL}(n,\mathbb{Z})$. Journal de théorie des nombres de Bordeaux, Volume 25 (2013) no. 1, pp. 99-109. doi : 10.5802/jtnb.828. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.828/
[1] H. Appelgate and H. Onishi, The similarity problem for integer matrices. Linear Algebra Appl. 42 (1982), 159–174. | MR | Zbl
[2] V. I. Arnold, Continued fractions (In Russian). Moscow Center of Continuous Mathematical Education, Moscow, 2002.
[3] J. Buchmann, A generalization of Voronoĭ’s unit algorithm. I. J. Number Theory 20(2) (1985), 177–191. | MR | Zbl
[4] J. Buchmann, A generalization of Voronoĭ’s unit algorithm. II. J. Number Theory 20(2) (1985), 192–209. | MR | Zbl
[5] F. J. Grunewald, Solution of the conjugacy problem in certain arithmetic groups. Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), 95 of Stud. Logic Foundations Math., North-Holland, Amsterdam, 1980, 101–139. | MR | Zbl
[6] O. Karpenkov, On the triangulations of tori associated with two-dimensional continued fractions of cubic irrationalities. Funct. Anal. Appl. 38(2) (2004), 102–110. Russian version: Funkt. Anal. Prilozh. 38(2) (2004), 28–37. | MR | Zbl
[7] O. Karpenkov, On Asymptotic Reducibility in . Technical report, arXiv:1205.4166, (2012).
[8] S. Katok, Continued fractions, hyperbolic geometry and quadratic forms. In MASS selecta, Amer. Math. Soc., Providence, RI, 2003, 121–160. | MR | Zbl
[9] F. Klein, Über eine geometrische Auffassung der gewöhnliche Kettenbruchentwicklung. Nachr. Ges. Wiss. Göttingen, Math-phys. Kl., 3:352–357, 1895.
[10] E. I. Korkina, The simplest -dimensional continued fraction. Topology, 3. J. Math. Sci. 82(5) (1996), 3680–3685. | MR | Zbl
[11] G. Lachaud, Voiles et polyhedres de Klein. Act. Sci. Ind., Hermann, 2002.
[12] Y. I. Manin and M. Marcolli, Continued fractions, modular symbols, and noncommutative geometry. Selecta Math. (N.S.), 8(3) (2002), 475–521. | MR | Zbl
[13] G. F. Voronoĭ, Algorithm of the generalized continued fraction (In Russian). In Collected works in three volumes, volume I. USSR Ac. Sci., Kiev, 1952.
Cited by Sources: