Let be a prime and a -adic field (a finite extension of the field of -adic numbers ). We employ the main results in [12] and the arithmetic of elliptic curves over to reduce the problem of classifying 3-dimensional non-associative division algebras (up to isotopy) over to the classification of ternary cubic forms over (up to equivalence) with no non-trivial zeros over . We give an explicit solution to the latter problem, which we then relate to the reduction type of the jacobian of .
This result completes the classification of 3-dimensional non-associative division algebras over number fields done in [12]. These algebras are useful for the construction of space-time codes, which are used to make communications over multiple-transmit antenna systems more reliable.
Soient p un nombre premier et un corps -adique. On emploie les résultats de [12] et l’arithmétique des courbes elliptiques sur pour réduire le problème de classification des algèbres à division non associatives de dimension 3 sur à celui de la classification des formes cubiques ternaires sur sans zéros non-triviaux. On donne une solution explicite du dernier problème qu’on relie ensuite à la réduction de la jacobienne de .
Ce résultat complète la classification des algèbres à division non associatives de dimension 3 sur les corps de nombres faite dans [12]. Ces algèbres sont utiles pour la construction des codes espace-temps utilisés pour une meilleure fiabilité des communications à travers les systèmes multi-antennes.
@article{JTNB_2011__23_2_329_0, author = {Abdulaziz Deajim and David Grant}, title = {On the classification of 3-dimensional non-associative division algebras over $p$-adic fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {329--346}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {2}, year = {2011}, doi = {10.5802/jtnb.765}, mrnumber = {2817933}, zbl = {1242.17006}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.765/} }
TY - JOUR AU - Abdulaziz Deajim AU - David Grant TI - On the classification of 3-dimensional non-associative division algebras over $p$-adic fields JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 329 EP - 346 VL - 23 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.765/ DO - 10.5802/jtnb.765 LA - en ID - JTNB_2011__23_2_329_0 ER -
%0 Journal Article %A Abdulaziz Deajim %A David Grant %T On the classification of 3-dimensional non-associative division algebras over $p$-adic fields %J Journal de théorie des nombres de Bordeaux %D 2011 %P 329-346 %V 23 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.765/ %R 10.5802/jtnb.765 %G en %F JTNB_2011__23_2_329_0
Abdulaziz Deajim; David Grant. On the classification of 3-dimensional non-associative division algebras over $p$-adic fields. Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 2, pp. 329-346. doi : 10.5802/jtnb.765. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.765/
[1] A. A. Albert, Non-associative algebras I: Fundamental concepts and Isotopy. Ann. of Math. 43 (1942), 685–707. | MR | Zbl
[2] A. A. Albert, On Nonassociative Division Algebras. Trans. Amer. Math. Soc. 72 (1952), 296–309. | MR | Zbl
[3] A. A. Albert, Generalized Twisted Fields. Pac. J. Math. 11 (1961), 1–8. | MR | Zbl
[4] S. An, S. Kim, D. Marshall, S. Marshall, W. McCallum, and A. Perlis, Jacobians of Genus One Curves. J. Number Theory 90 (2001), 304–315. | MR | Zbl
[5] M. Artin, F. Rodriguez-Villegas, and J. Tate, On the jacobians of plane cubics. Adv. Math. 198 (2005), 366–382. | MR | Zbl
[6] A. Beauville, Determinental hypersurfaces. Mich. Math. J. 48 (2000), 39–64. | MR | Zbl
[7] M. Bilioti, V. Jha, and N. L. Larson, Foundations of Translation Planes. Marcel Dekker, New York, 2001. | MR | Zbl
[8] Jeff Biggus, Sketching the history of hypercomplex numbers. Available at http://history.hyperjeff.net/hypercomplex
[9] J. V. Chipalkatti, Decomposable ternary cubics. Experiment. Math. 11 (2002), 69–80. | MR | Zbl
[10] J. E. Cremona, T. A. Fisher, and M. Stoll, Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves. J. Algebra & Number Theory. 4 (2010), 763–820. | MR
[11] A. Deajim, On Non-Associative Division Algebras Arising from Elliptic Curves. Ph.D. thesis, University of Colorado at Boulder, 2006. | MR
[12] A. Deajim and D. Grant, Space Time Codes and Non-Associative Division Algebras Arising from Elliptic Curves. Contemp. Math. 463 (2008), 29–44. | MR | Zbl
[13] A. Deajim, D. Grant, S. Limburg, and M. K. Varanasi, Space-time codes constructed from non-associative division algebras. in preparation.
[14] L. E. Dickson, Linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc. 7 (1906), 370–390. | MR
[15] L. E. Dickson, On triple algebras and ternary cubic forms. Bull. Amer. Math. Soc. 14 (1908), 160–168. | MR
[16] T. A. Fisher, Testing equivalence of ternary cubics. in “Algorithmic number theory,” F. Hess, S. Pauli, M. Pohst (eds.), Lecture Notes in Comput. Sci., Springer, 4076 (2006), 333-345. | MR | Zbl
[17] T. A. Fisher A new approach to minimising binary quartics and ternary cubics. Math. Res. Lett. 14 (2007), 597–613. | MR | Zbl
[18] W. Fulton, Algebraic Curves. W. A. Benjamin, New York, 1969. | MR | Zbl
[19] I. Kaplansky, Three-Dimensional Division Algebras II. Houston J. Math. 1, No. 1 (1975), 63–79. | MR | Zbl
[20] S. Lichtenbaum, The period-index problem for elliptic curves. Amer. J. Math. 90, No. 4 (1968), 1209–1223. | MR | Zbl
[21] G. Menichetti, On a Kaplansky Conjecture Concerning Three-Dimensional Division Algebras over a Finite Field. J. Algebra 47, No. 2 (1977), 400-410. | MR | Zbl
[22] G. Menichetti, -Dimensional Algebras over a Field with Cyclic Extension of Degree . Geometrica Dedicata 63 (1996), 69–94. | MR | Zbl
[23] J. S. Milne, Weil-Châtelet groups over local fields. Ann. scient. Éc. Norm. Sup., 4th series. 3, (1970), 273–284. | Numdam | MR | Zbl
[24] G. Salmon, Higher Plane Curves. 3rd ed., reprinted by Chelsea, New York, 1879.
[25] R. Schafer, An Introduction to Nonassociative Division Algebras. Dover Publications, New York, 1995. | MR
[26] J-P. Serre, Local Fields. GTM 67, Springer-Verlag, New York, 1979. | MR | Zbl
[27] J. Silverman, The Arithmetic of Elliptic Curves. GTM 106, Springer-Verlag, New York, 1986. | MR | Zbl
[28] J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves. GTM 151, Springer-Verlag, New York, 1994. | MR | Zbl
[29] V. Tarokh, N. Seshadri, and A. Calderbank, Space-time block codes for high data rate wireless communications. IEEE Trans. Inf. Theory 44, No. 2 (1998), 744–765. | MR | Zbl
Cited by Sources: