On the classification of 3-dimensional non-associative division algebras over p-adic fields
Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 2, pp. 329-346.

Let p be a prime and K a p-adic field (a finite extension of the field of p-adic numbers p ). We employ the main results in [12] and the arithmetic of elliptic curves over K to reduce the problem of classifying 3-dimensional non-associative division algebras (up to isotopy) over K to the classification of ternary cubic forms H over K (up to equivalence) with no non-trivial zeros over K. We give an explicit solution to the latter problem, which we then relate to the reduction type of the jacobian of H.

This result completes the classification of 3-dimensional non-associative division algebras over number fields done in [12]. These algebras are useful for the construction of space-time codes, which are used to make communications over multiple-transmit antenna systems more reliable.

Soient p un nombre premier et K un corps p-adique. On emploie les résultats de [12] et l’arithmétique des courbes elliptiques sur K pour réduire le problème de classification des algèbres à division non associatives de dimension 3 sur K à celui de la classification des formes cubiques ternaires H sur K sans zéros non-triviaux. On donne une solution explicite du dernier problème qu’on relie ensuite à la réduction de la jacobienne de H.

Ce résultat complète la classification des algèbres à division non associatives de dimension 3 sur les corps de nombres faite dans [12]. Ces algèbres sont utiles pour la construction des codes espace-temps utilisés pour une meilleure fiabilité des communications à travers les systèmes multi-antennes.

DOI: 10.5802/jtnb.765
Classification: 17A35, 94B27, 11E76, 11G07
Abdulaziz Deajim 1; David Grant 2

1 Department of Mathematics King Khalid University P.O. Box 9004 Abha, Saudi Arabia
2 Department of Mathematics University of Colorado at Boulder Boulder, Colorado 80309-0395, USA
@article{JTNB_2011__23_2_329_0,
     author = {Abdulaziz Deajim and David Grant},
     title = {On the classification of 3-dimensional non-associative division algebras over $p$-adic fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {329--346},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {2},
     year = {2011},
     doi = {10.5802/jtnb.765},
     mrnumber = {2817933},
     zbl = {1242.17006},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.765/}
}
TY  - JOUR
AU  - Abdulaziz Deajim
AU  - David Grant
TI  - On the classification of 3-dimensional non-associative division algebras over $p$-adic fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2011
SP  - 329
EP  - 346
VL  - 23
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.765/
DO  - 10.5802/jtnb.765
LA  - en
ID  - JTNB_2011__23_2_329_0
ER  - 
%0 Journal Article
%A Abdulaziz Deajim
%A David Grant
%T On the classification of 3-dimensional non-associative division algebras over $p$-adic fields
%J Journal de théorie des nombres de Bordeaux
%D 2011
%P 329-346
%V 23
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.765/
%R 10.5802/jtnb.765
%G en
%F JTNB_2011__23_2_329_0
Abdulaziz Deajim; David Grant. On the classification of 3-dimensional non-associative division algebras over $p$-adic fields. Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 2, pp. 329-346. doi : 10.5802/jtnb.765. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.765/

[1] A. A. Albert, Non-associative algebras I: Fundamental concepts and Isotopy. Ann. of Math. 43 (1942), 685–707. | MR | Zbl

[2] A. A. Albert, On Nonassociative Division Algebras. Trans. Amer. Math. Soc. 72 (1952), 296–309. | MR | Zbl

[3] A. A. Albert, Generalized Twisted Fields. Pac. J. Math. 11 (1961), 1–8. | MR | Zbl

[4] S. An, S. Kim, D. Marshall, S. Marshall, W. McCallum, and A. Perlis, Jacobians of Genus One Curves. J. Number Theory 90 (2001), 304–315. | MR | Zbl

[5] M. Artin, F. Rodriguez-Villegas, and J. Tate, On the jacobians of plane cubics. Adv. Math. 198 (2005), 366–382. | MR | Zbl

[6] A. Beauville, Determinental hypersurfaces. Mich. Math. J. 48 (2000), 39–64. | MR | Zbl

[7] M. Bilioti, V. Jha, and N. L. Larson, Foundations of Translation Planes. Marcel Dekker, New York, 2001. | MR | Zbl

[8] Jeff Biggus, Sketching the history of hypercomplex numbers. Available at http://history.hyperjeff.net/hypercomplex

[9] J. V. Chipalkatti, Decomposable ternary cubics. Experiment. Math. 11 (2002), 69–80. | MR | Zbl

[10] J. E. Cremona, T. A. Fisher, and M. Stoll, Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves. J. Algebra & Number Theory. 4 (2010), 763–820. | MR

[11] A. Deajim, On Non-Associative Division Algebras Arising from Elliptic Curves. Ph.D. thesis, University of Colorado at Boulder, 2006. | MR

[12] A. Deajim and D. Grant, Space Time Codes and Non-Associative Division Algebras Arising from Elliptic Curves. Contemp. Math. 463 (2008), 29–44. | MR | Zbl

[13] A. Deajim, D. Grant, S. Limburg, and M. K. Varanasi, Space-time codes constructed from non-associative division algebras. in preparation.

[14] L. E. Dickson, Linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc. 7 (1906), 370–390. | MR

[15] L. E. Dickson, On triple algebras and ternary cubic forms. Bull. Amer. Math. Soc. 14 (1908), 160–168. | MR

[16] T. A. Fisher, Testing equivalence of ternary cubics. in “Algorithmic number theory,” F. Hess, S. Pauli, M. Pohst (eds.), Lecture Notes in Comput. Sci., Springer, 4076 (2006), 333-345. | MR | Zbl

[17] T. A. Fisher A new approach to minimising binary quartics and ternary cubics. Math. Res. Lett. 14 (2007), 597–613. | MR | Zbl

[18] W. Fulton, Algebraic Curves. W. A. Benjamin, New York, 1969. | MR | Zbl

[19] I. Kaplansky, Three-Dimensional Division Algebras II. Houston J. Math. 1, No. 1 (1975), 63–79. | MR | Zbl

[20] S. Lichtenbaum, The period-index problem for elliptic curves. Amer. J. Math. 90, No. 4 (1968), 1209–1223. | MR | Zbl

[21] G. Menichetti, On a Kaplansky Conjecture Concerning Three-Dimensional Division Algebras over a Finite Field. J. Algebra 47, No. 2 (1977), 400-410. | MR | Zbl

[22] G. Menichetti, n-Dimensional Algebras over a Field with Cyclic Extension of Degree n. Geometrica Dedicata 63 (1996), 69–94. | MR | Zbl

[23] J. S. Milne, Weil-Châtelet groups over local fields. Ann. scient. Éc. Norm. Sup., 4th series. 3, (1970), 273–284. | Numdam | MR | Zbl

[24] G. Salmon, Higher Plane Curves. 3rd ed., reprinted by Chelsea, New York, 1879.

[25] R. Schafer, An Introduction to Nonassociative Division Algebras. Dover Publications, New York, 1995. | MR

[26] J-P. Serre, Local Fields. GTM 67, Springer-Verlag, New York, 1979. | MR | Zbl

[27] J. Silverman, The Arithmetic of Elliptic Curves. GTM 106, Springer-Verlag, New York, 1986. | MR | Zbl

[28] J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves. GTM 151, Springer-Verlag, New York, 1994. | MR | Zbl

[29] V. Tarokh, N. Seshadri, and A. Calderbank, Space-time block codes for high data rate wireless communications. IEEE Trans. Inf. Theory 44, No. 2 (1998), 744–765. | MR | Zbl

Cited by Sources: