On the classification of 3-dimensional non-associative division algebras over p-adic fields
Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 2, pp. 329-346.

Soient p un nombre premier et K un corps p-adique. On emploie les résultats de [12] et l’arithmétique des courbes elliptiques sur K pour réduire le problème de classification des algèbres à division non associatives de dimension 3 sur K à celui de la classification des formes cubiques ternaires H sur K sans zéros non-triviaux. On donne une solution explicite du dernier problème qu’on relie ensuite à la réduction de la jacobienne de H.

Ce résultat complète la classification des algèbres à division non associatives de dimension 3 sur les corps de nombres faite dans [12]. Ces algèbres sont utiles pour la construction des codes espace-temps utilisés pour une meilleure fiabilité des communications à travers les systèmes multi-antennes.

Let p be a prime and K a p-adic field (a finite extension of the field of p-adic numbers p ). We employ the main results in [12] and the arithmetic of elliptic curves over K to reduce the problem of classifying 3-dimensional non-associative division algebras (up to isotopy) over K to the classification of ternary cubic forms H over K (up to equivalence) with no non-trivial zeros over K. We give an explicit solution to the latter problem, which we then relate to the reduction type of the jacobian of H.

This result completes the classification of 3-dimensional non-associative division algebras over number fields done in [12]. These algebras are useful for the construction of space-time codes, which are used to make communications over multiple-transmit antenna systems more reliable.

Reçu le :
Révisé le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.765
Classification : 17A35,  94B27,  11E76,  11G07
@article{JTNB_2011__23_2_329_0,
     author = {Abdulaziz Deajim and David Grant},
     title = {On the classification of 3-dimensional non-associative division algebras over $p$-adic fields},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {329--346},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {2},
     year = {2011},
     doi = {10.5802/jtnb.765},
     mrnumber = {2817933},
     zbl = {1242.17006},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.765/}
}
Abdulaziz Deajim; David Grant. On the classification of 3-dimensional non-associative division algebras over $p$-adic fields. Journal de Théorie des Nombres de Bordeaux, Tome 23 (2011) no. 2, pp. 329-346. doi : 10.5802/jtnb.765. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.765/

[1] A. A. Albert, Non-associative algebras I: Fundamental concepts and Isotopy. Ann. of Math. 43 (1942), 685–707. | MR 7747 | Zbl 0061.04807

[2] A. A. Albert, On Nonassociative Division Algebras. Trans. Amer. Math. Soc. 72 (1952), 296–309. | MR 47027 | Zbl 0046.03601

[3] A. A. Albert, Generalized Twisted Fields. Pac. J. Math. 11 (1961), 1–8. | MR 122850 | Zbl 0154.27203

[4] S. An, S. Kim, D. Marshall, S. Marshall, W. McCallum, and A. Perlis, Jacobians of Genus One Curves. J. Number Theory 90 (2001), 304–315. | MR 1858080 | Zbl 1066.14035

[5] M. Artin, F. Rodriguez-Villegas, and J. Tate, On the jacobians of plane cubics. Adv. Math. 198 (2005), 366–382. | MR 2183258 | Zbl 1092.14054

[6] A. Beauville, Determinental hypersurfaces. Mich. Math. J. 48 (2000), 39–64. | MR 1786479 | Zbl 1076.14534

[7] M. Bilioti, V. Jha, and N. L. Larson, Foundations of Translation Planes. Marcel Dekker, New York, 2001. | MR 1840342 | Zbl 0987.51002

[8] Jeff Biggus, Sketching the history of hypercomplex numbers. Available at http://history.hyperjeff.net/hypercomplex

[9] J. V. Chipalkatti, Decomposable ternary cubics. Experiment. Math. 11 (2002), 69–80. | MR 1960301 | Zbl 1046.14500

[10] J. E. Cremona, T. A. Fisher, and M. Stoll, Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves. J. Algebra & Number Theory. 4 (2010), 763–820. | MR 2728489 | Zbl pre05809198

[11] A. Deajim, On Non-Associative Division Algebras Arising from Elliptic Curves. Ph.D. thesis, University of Colorado at Boulder, 2006. | MR 2709060

[12] A. Deajim and D. Grant, Space Time Codes and Non-Associative Division Algebras Arising from Elliptic Curves. Contemp. Math. 463 (2008), 29–44. | MR 2459987 | Zbl 1163.17005

[13] A. Deajim, D. Grant, S. Limburg, and M. K. Varanasi, Space-time codes constructed from non-associative division algebras. in preparation.

[14] L. E. Dickson, Linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc. 7 (1906), 370–390. | MR 1500755

[15] L. E. Dickson, On triple algebras and ternary cubic forms. Bull. Amer. Math. Soc. 14 (1908), 160–168. | MR 1558578

[16] T. A. Fisher, Testing equivalence of ternary cubics. in “Algorithmic number theory,” F. Hess, S. Pauli, M. Pohst (eds.), Lecture Notes in Comput. Sci., Springer, 4076 (2006), 333-345. | MR 2282934 | Zbl 1143.11325

[17] T. A. Fisher A new approach to minimising binary quartics and ternary cubics. Math. Res. Lett. 14 (2007), 597–613. | MR 2335986 | Zbl 1142.11038

[18] W. Fulton, Algebraic Curves. W. A. Benjamin, New York, 1969. | MR 313252 | Zbl 0181.23901

[19] I. Kaplansky, Three-Dimensional Division Algebras II. Houston J. Math. 1, No. 1 (1975), 63–79. | MR 432705 | Zbl 0355.17007

[20] S. Lichtenbaum, The period-index problem for elliptic curves. Amer. J. Math. 90, No. 4 (1968), 1209–1223. | MR 237506 | Zbl 0187.18602

[21] G. Menichetti, On a Kaplansky Conjecture Concerning Three-Dimensional Division Algebras over a Finite Field. J. Algebra 47, No. 2 (1977), 400-410. | MR 453823 | Zbl 0362.17002

[22] G. Menichetti, n-Dimensional Algebras over a Field with Cyclic Extension of Degree n. Geometrica Dedicata 63 (1996), 69–94. | MR 1413622 | Zbl 0869.17002

[23] J. S. Milne, Weil-Châtelet groups over local fields. Ann. scient. Éc. Norm. Sup., 4th series. 3, (1970), 273–284. | Numdam | MR 276249 | Zbl 0212.53201

[24] G. Salmon, Higher Plane Curves. 3rd ed., reprinted by Chelsea, New York, 1879.

[25] R. Schafer, An Introduction to Nonassociative Division Algebras. Dover Publications, New York, 1995. | MR 1375235

[26] J-P. Serre, Local Fields. GTM 67, Springer-Verlag, New York, 1979. | MR 554237 | Zbl 0423.12016

[27] J. Silverman, The Arithmetic of Elliptic Curves. GTM 106, Springer-Verlag, New York, 1986. | MR 817210 | Zbl 0585.14026

[28] J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves. GTM 151, Springer-Verlag, New York, 1994. | MR 1312368 | Zbl 0911.14015

[29] V. Tarokh, N. Seshadri, and A. Calderbank, Space-time block codes for high data rate wireless communications. IEEE Trans. Inf. Theory 44, No. 2 (1998), 744–765. | MR 1607687 | Zbl 0910.94013