Power values of certain quadratic polynomials
Journal de Théorie des Nombres de Bordeaux, Tome 22 (2010) no. 3, pp. 645-660.

Soit f un polynôme quadratique à coefficients entiers avec discriminant sans carré parfait et q>1 un entier tel que q et le nombre de classes du corps de rupture de f sont premiers entre eux. Dans cet article, nous calculons les puissances q-ième qui apparaissent comme valeurs entières de f. La théorie des diviseurs primitifs de suites d’entiers permet de déduire une borne sur les valeurs possibles de q qui est suffisamment petite pour que les cas restants puissent facilement être vérifiés. Ces résultats permettent de trouver toutes les puissances parfaites qui apparaissent dans certaines suites polynômiales récursives entières, y compris la suite de Sylvester.

In this article we compute the qth power values of the quadratic polynomials f[x] with negative squarefree discriminant such that q is coprime to the class number of the splitting field of f over . The theory of unique factorisation and that of primitive divisors of integer sequences is used to deduce a bound on the values of q which is small enough to allow the remaining cases to be easily checked. The results are used to determine all perfect power terms of certain polynomially generated integer sequences, including the Sylvester sequence.

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.737
Classification : 11B37,  11A41,  11B39
Mots clés : Primitive divisor; Diophantine equation; Lucas sequence
@article{JTNB_2010__22_3_645_0,
     author = {Anthony Flatters},
     title = {Power values of certain quadratic polynomials},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {645--660},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {3},
     year = {2010},
     doi = {10.5802/jtnb.737},
     zbl = {1236.11018},
     mrnumber = {2769336},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.737/}
}
TY  - JOUR
AU  - Anthony Flatters
TI  - Power values of certain quadratic polynomials
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2010
DA  - 2010///
SP  - 645
EP  - 660
VL  - 22
IS  - 3
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.737/
UR  - https://zbmath.org/?q=an%3A1236.11018
UR  - https://www.ams.org/mathscinet-getitem?mr=2769336
UR  - https://doi.org/10.5802/jtnb.737
DO  - 10.5802/jtnb.737
LA  - en
ID  - JTNB_2010__22_3_645_0
ER  - 
Anthony Flatters. Power values of certain quadratic polynomials. Journal de Théorie des Nombres de Bordeaux, Tome 22 (2010) no. 3, pp. 645-660. doi : 10.5802/jtnb.737. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.737/

[1] M. Abouzaid, Les nombres de Lucas et Lehmer sans diviseur primitif, J. Théor. Nombres Bordeaux, 18 (2006), pp. 299–313. | Numdam | MR 2289425 | Zbl 1139.11011

[2] F. S. Abu Muriefah and Y. Bugeaud, The Diophantine equation x 2 +c=y n : a brief overview, Rev. Colombiana Mat., 40 (2006), pp. 31–37. | MR 2286850 | Zbl 1189.11019

[3] S. A. Arif and F. S. Abu Muriefah, On the Diophantine equation x 2 +q 2k+1 =y n , J. Number Theory, 95 (2002), pp. 95–100. | MR 1916082 | Zbl 1037.11021

[4] S. A. Arif and A. S. Al-Ali, On the Diophantine equation x 2 +p 2k+1 =4y n , Int. J. Math. Math. Sci., 31 (2002), pp. 695–699. | MR 1928911 | Zbl 1064.11029

[5] A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc., 65 (1969), pp. 439–444. | MR 234912 | Zbl 0174.33803

[6] M. A. Bennett, N. Bruin, K. Győry, and L. Hajdu, Powers from products of consecutive terms in arithmetic progression, Proc. London Math. Soc. (3), 92 (2006), pp. 273–306. | MR 2205718 | Zbl 1178.11033

[7] M. A. Bennett, K. Győry, M. Mignotte, and Á. Pintér, Binomial Thue equations and polynomial powers, Compos. Math., 142 (2006), pp. 1103–1121. | MR 2264658 | Zbl 1126.11018

[8] A. Bérczes, B. Brindza, and L. Hajdu, On the power values of polynomials, Publ. Math. Debrecen, 53 (1998), pp. 375–381. | MR 1657483 | Zbl 0911.11019

[9] Y. Bilu, On Le’s and Bugeaud’s papers about the equation ax 2 +b 2m-1 =4c p , Monatsh. Math., 137 (2002), pp. 1–3. | MR 1930991 | Zbl 1012.11023

[10] Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539 (2001), pp. 75–122. With an appendix by M. Mignotte. | MR 1863855 | Zbl 0995.11010

[11] Y. F. Bilu and G. Hanrot, Solving superelliptic Diophantine equations by Baker’s method, Compositio Math., 112 (1998), pp. 273–312. | MR 1631771 | Zbl 0915.11065

[12] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), pp. 235–265. Computational algebra and number theory (London, 1993). | MR 1484478 | Zbl 0898.68039

[13] B. Brindza, On S-integral solutions of the equation y m =f(x), Acta Math. Hungar., 44 (1984), pp. 133–139. | MR 759041 | Zbl 0552.10009

[14] B. Brindza, J.-H. Evertse, and K. Győry, Bounds for the solutions of some Diophantine equations in terms of discriminants, J. Austral. Math. Soc. Ser. A, 51 (1991), pp. 8–26. | MR 1119684 | Zbl 0746.11018

[15] Y. Bugeaud, Bounds for the solutions of superelliptic equations, Compositio Math., 107 (1997), pp. 187–219. | MR 1458749 | Zbl 0886.11016

[16] Y. Bugeaud, On some exponential Diophantine equations, Monatsh. Math., 132 (2001), pp. 93–97. | MR 1838399 | Zbl 1014.11023

[17] Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2), 163 (2006), pp. 969–1018. | MR 2215137 | Zbl 1113.11021

[18] H. Cohen, Pari-gp. www.parigp-home.de.

[19] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc., 39 (1964), pp. 537–540. | MR 163867 | Zbl 0127.26705

[20] A. Flatters, Arithmetic properties of recurrence sequences, PhD thesis, University of East Anglia, 2010.

[21] S. W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly, 70 (1963), pp. 403–405. | MR 148605 | Zbl 0139.26705

[22] K. Győry, L. Hajdu, and Á. Pintér, Perfect powers from products of consecutive terms in arithmetic progression, Compos. Math., 145 (2009), pp. 845–864. | MR 2521247 | Zbl 1194.11043

[23] K. Győry, I. Pink, and A. Pintér, Power values of polynomials and binomial Thue-Mahler equations, Publ. Math. Debrecen, 65 (2004), pp. 341–362. | MR 2107952 | Zbl 1064.11025

[24] K. Györy and Á. Pintér, Almost perfect powers in products of consecutive integers, Monatsh. Math., 145 (2005), pp. 19–33. | MR 2134477 | Zbl 1096.11014

[25] K. Győry and Á. Pintér, On the resolution of equations Ax n -By n =C in integers x,y and n3. I, Publ. Math. Debrecen, 70 (2007), pp. 483–501. | MR 2310662 | Zbl 1127.11024

[26] K. Győry and Á. Pintér, Polynomial powers and a common generalization of binomial Thue-Mahler equations and S-unit equations, in Diophantine equations, vol. 20 of Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2008, pp. 103–119. | MR 1500221 | Zbl pre05679645

[27] V. Lebesgue, Sur l’impossibilité, en nombres entiers, de l’équation x m =y 2 +1, Nouv. Ann. Math., 9 (1850), pp. 178–181. | Numdam

[28] S. P. Mohanty, The number of primes is infinite, Fibonacci Quart., 16 (1978), pp. 381–384. | MR 514325 | Zbl 0393.10004

[29] A. Pethő, Full cubes in the Fibonacci sequence, Publ. Math. Debrecen, 30 (1983), pp. 117–127. | MR 733078 | Zbl 0549.10007

[30] D. Poulakis, Solutions entières de l’équation Y m =f(X), Sém. Théor. Nombres Bordeaux (2), 3 (1991), pp. 187–199. | Numdam | Zbl 0733.11009

[31] A. Schinzel and R. Tijdeman, On the equation y m =P(x), Acta Arith., 31 (1976), pp. 199–204. | MR 422150 | Zbl 0339.10018

[32] T. N. Shorey and C. L. Stewart, On the Diophantine equation ax 2t +bx t y+cy 2 =d and pure powers in recurrence sequences, Math. Scand., 52 (1983), pp. 24–36. | MR 697495 | Zbl 0491.10016

[33] T. N. Shorey and C. L. Stewart, Pure powers in recurrence sequences and some related Diophantine equations, J. Number Theory, 27 (1987), pp. 324–352. | MR 915504 | Zbl 0624.10009

[34] T. N. Shorey and R. Tijdeman, Exponential Diophantine equations, vol. 87 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1986. | MR 891406 | Zbl 0606.10011

[35] C. L. Siegel, The integer solutions of the equation y 2 =ax n +bx n-1 ++k., Journal L. M. S., 1 (1926), pp. 66–68.

[36] N. Sloane, Online encyclopedia of integer sequences. .

[37] V. G. Sprindžuk, The arithmetic structure of integer polynomials and class numbers, Trudy Mat. Inst. Steklov., 143 (1977), pp. 152–174, 210. Analytic number theory, mathematical analysis and their applications (dedicated to I. M. Vinogradov on his 85th birthday). | MR 480426 | Zbl 0439.12006

[38] R. Tijdeman, Applications of the Gelʼfond-Baker method to rational number theory, in Topics in number theory (Proc. Colloq., Debrecen, 1974), North-Holland, Amsterdam, 1976, pp. 399–416. Colloq. Math. Soc. János Bolyai, Vol. 13. | MR 560494 | Zbl 0335.10022

[39] P. M. Voutier, An upper bound for the size of integral solutions to Y m =f(X), J. Number Theory, 53 (1995), pp. 247–271. | MR 1348763 | Zbl 0842.11008

Cité par Sources :