Small-sum pairs in abelian groups
Journal de Théorie des Nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 525-535.

Let $G$ be an abelian group and $A,B$ two subsets of equal size $k$ such that $A+B$ and $A+A$ both have size $2k-1$. Answering a question of Bihani and Jin, we prove that if $A+B$ is aperiodic or if there exist elements $a\in A$ and $b\in B$ such that $a+b$ has a unique expression as an element of $A+B$ and $a+a$ has a unique expression as an element of $A+A$, then $A$ is a translate of $B$. We also give an explicit description of the various counterexamples which arise when neither condition holds.

Soient $G$ un groupe abélien fini et $A$, $B$ deux sous-ensembles de $G$ tels que $|A|=|B|=k$ et $|A+A|=|A+B|=2k-1$. Pour tous sous-ensembles $X$, $Y$ de $G$ et $c\in G$, notons ${\nu }_{c}\left(X,Y\right)$ le nombre de couples $\left(x,y\right)\in X×Y$ tels que $c=x+y$. Nous résolvons une question de Bihani et Jin en montrant qu’il existe $g\in G$ tel que $A=g+B$ si $A+B$ est apériodique ou s’il existe $a\in A$ et $b\in B$ tels que ${\nu }_{a+b}\left(A,B\right)={\nu }_{a+a}\left(A,A\right)=1$. Nous donnons aussi une description explicite des divers contre-exemples qui se présentent si aucune de ces hypothèses n’est satisfaite.

Published online:
DOI: 10.5802/jtnb.730
Reza Akhtar 1; Paul Larson 1

1 Department of Mathematics Miami University Oxford, OH 45056, USA
@article{JTNB_2010__22_3_525_0,
author = {Reza Akhtar and Paul Larson},
title = {Small-sum pairs in abelian groups},
journal = {Journal de Th\'eorie des Nombres de Bordeaux},
pages = {525--535},
publisher = {Universit\'e Bordeaux 1},
volume = {22},
number = {3},
year = {2010},
doi = {10.5802/jtnb.730},
zbl = {1236.11026},
mrnumber = {2769329},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.730/}
}
TY  - JOUR
TI  - Small-sum pairs in abelian groups
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2010
DA  - 2010///
SP  - 525
EP  - 535
VL  - 22
IS  - 3
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.730/
UR  - https://zbmath.org/?q=an%3A1236.11026
UR  - https://www.ams.org/mathscinet-getitem?mr=2769329
UR  - https://doi.org/10.5802/jtnb.730
DO  - 10.5802/jtnb.730
LA  - en
ID  - JTNB_2010__22_3_525_0
ER  - 
%0 Journal Article
%T Small-sum pairs in abelian groups
%J Journal de Théorie des Nombres de Bordeaux
%D 2010
%P 525-535
%V 22
%N 3
%I Université Bordeaux 1
%U https://doi.org/10.5802/jtnb.730
%R 10.5802/jtnb.730
%G en
%F JTNB_2010__22_3_525_0
Reza Akhtar; Paul Larson. Small-sum pairs in abelian groups. Journal de Théorie des Nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 525-535. doi : 10.5802/jtnb.730. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.730/

[1] P. Bihani and R. Jin, Kneser’s Theorem for Upper Banach Density. Journal de Théorie des Nombres de Bordeaux 18 (2006), no. 2, 323–343. | Numdam | MR: 2289427 | Zbl: 1138.11044

[2] D. Grynkiewicz, Quasi-periodic decompositions and the Kemperman structure theorem. European Journal of Combinatorics 26 (2005), 559–575. | MR: 2126639 | Zbl: 1116.11081

[3] Y. O. Hamidoune, Subsets with small sums in abelian groups. I. The Vosper property. European Journal of Combinatorics 18 (1997), no. 5, 541–556. | MR: 1455186 | Zbl: 0883.05065

[4] Y. O. Hamidoune, Subsets with a small sum. II. The critical pair problem. European Journal of Combinatorics 21 (2000), no. 2, 231–239. | MR: 1742437 | Zbl: 0941.05064

[5] J. H. B. Kemperman, On small subsets of an abelian group. Acta Mathematica 103 (1960), 63–88. | MR: 110747 | Zbl: 0108.25704

[6] A. G. Vosper, The critical pairs of subsets of a group of prime order. J. London Math. Soc. 31 (1956), 200–205 and 280–282. | MR: 77555 | Zbl: 0072.03402

[7] M. Nathanson, Additive Number Theory. Springer, 1996. | MR: 1477155 | Zbl: 0859.11002

Cited by Sources: