Let be an abelian group and two subsets of equal size such that and both have size . Answering a question of Bihani and Jin, we prove that if is aperiodic or if there exist elements and such that has a unique expression as an element of and has a unique expression as an element of , then is a translate of . We also give an explicit description of the various counterexamples which arise when neither condition holds.
Soient un groupe abélien fini et , deux sous-ensembles de tels que et . Pour tous sous-ensembles , de et , notons le nombre de couples tels que . Nous résolvons une question de Bihani et Jin en montrant qu’il existe tel que si est apériodique ou s’il existe et tels que . Nous donnons aussi une description explicite des divers contre-exemples qui se présentent si aucune de ces hypothèses n’est satisfaite.
@article{JTNB_2010__22_3_525_0, author = {Reza Akhtar and Paul Larson}, title = {Small-sum pairs in abelian groups}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {525--535}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {3}, year = {2010}, doi = {10.5802/jtnb.730}, mrnumber = {2769329}, zbl = {1236.11026}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.730/} }
TY - JOUR AU - Reza Akhtar AU - Paul Larson TI - Small-sum pairs in abelian groups JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 525 EP - 535 VL - 22 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.730/ DO - 10.5802/jtnb.730 LA - en ID - JTNB_2010__22_3_525_0 ER -
%0 Journal Article %A Reza Akhtar %A Paul Larson %T Small-sum pairs in abelian groups %J Journal de théorie des nombres de Bordeaux %D 2010 %P 525-535 %V 22 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.730/ %R 10.5802/jtnb.730 %G en %F JTNB_2010__22_3_525_0
Reza Akhtar; Paul Larson. Small-sum pairs in abelian groups. Journal de théorie des nombres de Bordeaux, Volume 22 (2010) no. 3, pp. 525-535. doi : 10.5802/jtnb.730. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.730/
[1] P. Bihani and R. Jin, Kneser’s Theorem for Upper Banach Density. Journal de Théorie des Nombres de Bordeaux 18 (2006), no. 2, 323–343. | Numdam | MR | Zbl
[2] D. Grynkiewicz, Quasi-periodic decompositions and the Kemperman structure theorem. European Journal of Combinatorics 26 (2005), 559–575. | MR | Zbl
[3] Y. O. Hamidoune, Subsets with small sums in abelian groups. I. The Vosper property. European Journal of Combinatorics 18 (1997), no. 5, 541–556. | MR | Zbl
[4] Y. O. Hamidoune, Subsets with a small sum. II. The critical pair problem. European Journal of Combinatorics 21 (2000), no. 2, 231–239. | MR | Zbl
[5] J. H. B. Kemperman, On small subsets of an abelian group. Acta Mathematica 103 (1960), 63–88. | MR | Zbl
[6] A. G. Vosper, The critical pairs of subsets of a group of prime order. J. London Math. Soc. 31 (1956), 200–205 and 280–282. | MR | Zbl
[7] M. Nathanson, Additive Number Theory. Springer, 1996. | MR | Zbl
Cited by Sources: