Denote by
Soit
@article{JTNB_2010__22_2_339_0, author = {Michael Coons}, title = {(Non)Automaticity of number theoretic functions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {339--352}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {2}, year = {2010}, doi = {10.5802/jtnb.718}, mrnumber = {2769065}, zbl = {1223.11115}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.718/} }
TY - JOUR AU - Michael Coons TI - (Non)Automaticity of number theoretic functions JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 339 EP - 352 VL - 22 IS - 2 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.718/ DO - 10.5802/jtnb.718 LA - en ID - JTNB_2010__22_2_339_0 ER -
%0 Journal Article %A Michael Coons %T (Non)Automaticity of number theoretic functions %J Journal de théorie des nombres de Bordeaux %D 2010 %P 339-352 %V 22 %N 2 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.718/ %R 10.5802/jtnb.718 %G en %F JTNB_2010__22_2_339_0
Michael Coons. (Non)Automaticity of number theoretic functions. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 2, pp. 339-352. doi : 10.5802/jtnb.718. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.718/
[1] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases. Ann. of Math. (2) 165 (2007), no. 2, 547–565. | MR | Zbl
[2] J.-P. Allouche, Note on the transcendence of a generating function. New trends in probability and statistics. Vol. 4 (Palanga, 1996), VSP, Utrecht, 1997, pp. 461–465. | MR | Zbl
[3] J.-P. Allouche, Transcendence of formal power series with rational coefficients. Theoret. Comput. Sci. 218 (1999), no. 1, 143–160, WORDS (Rouen, 1997). | MR | Zbl
[4] J.-P. Allouche and H. Cohen, Dirichlet series and curious infinite products. Bull. London Math. Soc. 17 (1985), no. 6, 531–538. | MR | Zbl
[5] J.-P. Allouche, M. Mendès France, and J. Peyrière, Automatic Dirichlet series. J. Number Theory 81 (2000), no. 2, 359–373. | MR | Zbl
[6] J.-P. Allouche and J. Shallit, Automatic sequences. Cambridge University Press, Cambridge, 2003. | MR | Zbl
[7] W. D. Banks, F. Luca, and I. E. Shparlinski, Irrationality of power series for various number theoretic functions. Manuscripta Math. 117 (2005), no. 2, 183–197. | MR | Zbl
[8] P. Borwein and M. Coons, Transcendence of power series for some number theoretic functions. Proc. Amer. Math. Soc. 137 (2009), no. 4, 1303–1305. | MR
[9] F. Carlson, Über Potenzreihen mit ganzzahligen Koeffizienten. Math. Zeitschr. (1921), no. 9, 1–13. | MR
[10] G. Christol, Ensembles presque périodiques
[11] A. Cobham, Uniform tag sequences. Math. Systems Theory 6 (1972), 164–192. | MR | Zbl
[12] J. B. Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line. J. Reine Angew. Math. 399 (1989), 1–26. | MR | Zbl
[13] Ch.-J. de la Vallée Poussin, Recherches analytiques de la théorie des nombres premiers. Ann. Soc. Scient. Bruxelles 20 (1896), 183–256.
[14] P. Fatou, Séries trigonométriques et séries de Taylor. Acta Math. (1906), no. 30, 335–400. | MR
[15] J. Hadamard, Sur la distribution des zéros de la fonction
[16] J. Hartmanis and H. Shank, On the recognition of primes by automata. J. Assoc. Comput. Mach. 15 (1968), 382–389. | MR | Zbl
[17] E. Landau and A. Walfisz, Über die Nichtfortsetzbarkeit einiger durch Dirichletsche Reihen definierter Funktionen. Palermo Rend. (1920), no. 44, 82–86.
[18] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann. 101 (1929), no. 1, 342–366. | MR
[19] M. Minsky and S. Papert, Unrecognizable sets of numbers. J. Assoc. Comput. Mach. 13 (1966), 281–286. | MR | Zbl
[20] K. Nishioka, Mahler functions and transcendence. Lecture Notes in Mathematics, vol. 1631, Springer-Verlag, Berlin, 1996. | MR | Zbl
[21] R. W. Ritchie, Finite automata and the set of squares. J. Assoc. Comput. Mach. 10 (1963), 528–531. | MR | Zbl
[22] A. Selberg, On the zeros of Riemann’s zeta-function. Skr. Norske Vid. Akad. Oslo I. 1942 (1942), no. 10, 59 pp. | MR | Zbl
[23] J. Shallit, Automaticity IV: Sequences, sets, and diversity. J. Théor. Nombres Bordeaux 8 (1996), no. 2, 347–367. | Numdam | MR | Zbl
[24] E. C. Titchmarsh, The theory of the Riemann zeta-function. second ed., The Clarendon Press Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown. | MR | Zbl
[25] H. von Mangoldt, Zu Riemanns Abhandlung über die Anzahle der Primzahlen unter einer gegebenen Grösse. J. Reine Angew. Math. 144 (1895), 255–305.
[26] S. Yazdani, Multiplicative functions and
- Automatic sequences and parity of partition functions, Advances in Applied Mathematics, Volume 166 (2025), p. 23 (Id/No 102869) | DOI:10.1016/j.aam.2025.102869 | Zbl:8015067
- Combinatorics on words and generating Dirichlet series of automatic sequences, Discrete Mathematics, Volume 348 (2025) no. 8, p. 114487 | DOI:10.1016/j.disc.2025.114487
- On asymptotically automatic sequences, Acta Arithmetica, Volume 215 (2024) no. 3, pp. 249-287 | DOI:10.4064/aa230619-26-4 | Zbl:7927131
- Radial asymptotics of generating functions of
-regular sequences, Bulletin of the Australian Mathematical Society, Volume 110 (2024) no. 3, pp. 528-534 | DOI:10.1017/s0004972724000480 | Zbl:7970542 - Characteristic sequences of the sets of sums of squares as columns of cellular automata, Combinatorics on words. 14th international conference, WORDS 2023, Umeå, Sweden, June 12–16, 2023. Proceedings, Cham: Springer, 2023, pp. 288-300 | DOI:10.1007/978-3-031-33180-0_22 | Zbl:7716998
- How to prove that a sequence is not automatic, Expositiones Mathematicae, Volume 40 (2022) no. 1, pp. 1-22 | DOI:10.1016/j.exmath.2021.08.001 | Zbl:1497.11063
- Multiplicative automatic sequences, Mathematische Zeitschrift, Volume 300 (2022) no. 2, pp. 1297-1318 | DOI:10.1007/s00209-021-02834-3 | Zbl:1497.11064
- Asymptotic analysis of regular sequences, Algorithmica, Volume 82 (2020) no. 3, pp. 429-508 | DOI:10.1007/s00453-019-00631-3 | Zbl:1476.11018
- On multiplicative automatic sequences, Bulletin of the London Mathematical Society, Volume 52 (2020) no. 1, pp. 175-184 | DOI:10.1112/blms.12317 | Zbl:1472.11088
- A note on multiplicative automatic sequences. II, Bulletin of the London Mathematical Society, Volume 52 (2020) no. 1, pp. 185-188 | DOI:10.1112/blms.12318 | Zbl:1457.11023
- Mock characters and the Kronecker symbol, Journal of Number Theory, Volume 192 (2018), pp. 356-372 | DOI:10.1016/j.jnt.2018.04.022 | Zbl:1448.11062
- Walking on real numbers (2013), Pi: The Next Generation (2016), p. 341 | DOI:10.1007/978-3-319-32377-0_21
- Infinite products of cyclotomic polynomials, Bulletin of the Australian Mathematical Society, Volume 91 (2015) no. 3, pp. 400-411 | DOI:10.1017/s0004972715000039 | Zbl:1320.11087
- Walking on real numbers, The Mathematical Intelligencer, Volume 35 (2013) no. 1, pp. 42-60 | DOI:10.1007/s00283-012-9340-x | Zbl:1282.11088
- Transcendence of generating functions whose coefficients are multiplicative, Transactions of the American Mathematical Society, Volume 364 (2012) no. 2, pp. 933-959 | DOI:10.1090/s0002-9947-2011-05479-6 | Zbl:1271.11095
Cité par 15 documents. Sources : Crossref, zbMATH