Let be an odd prime, be a primitive root modulo and with . In 2007, R. Queme raised the question whether the -rank ( an odd prime ) of the ideal class group of the -th cyclotomic field is equal to the degree of the greatest common divisor over the finite field of and Kummer’s polynomial . In this paper, we shall give the complete answer for this question enumerating a counter-example.
Soit un nombre premier impair, une racine primitive modulo et avec . En 2007, R. Queme a posé la question : le -rang ( premier impair ) du groupe des classes d’idéaux du -ième corps cyclotomique est-il égal au degré du plus grand diviseur commun sur le corps fini de et du polynôme de Kummer . Dans cet article, nous donnons une réponse complète à cette question en produisant un contre-exemple.
@article{JTNB_2008__20_2_525_0, author = {Tetsuya Taniguchi}, title = {Prime factors of class number of cyclotomic fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {525--530}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {2}, year = {2008}, doi = {10.5802/jtnb.639}, mrnumber = {2477516}, zbl = {1163.11078}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.639/} }
TY - JOUR AU - Tetsuya Taniguchi TI - Prime factors of class number of cyclotomic fields JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 525 EP - 530 VL - 20 IS - 2 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.639/ DO - 10.5802/jtnb.639 LA - en ID - JTNB_2008__20_2_525_0 ER -
%0 Journal Article %A Tetsuya Taniguchi %T Prime factors of class number of cyclotomic fields %J Journal de théorie des nombres de Bordeaux %D 2008 %P 525-530 %V 20 %N 2 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.639/ %R 10.5802/jtnb.639 %G en %F JTNB_2008__20_2_525_0
Tetsuya Taniguchi. Prime factors of class number of cyclotomic fields. Journal de théorie des nombres de Bordeaux, Volume 20 (2008) no. 2, pp. 525-530. doi : 10.5802/jtnb.639. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.639/
[1] Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc., Volume 24 (1970), pp. 457-462 | MR | Zbl
[2] Olga Taussky-Todd’s work in class field theory, Pacific J. Math. (1997) no. Special Issue, pp. 219-224 | Zbl
[3] Bestimmung der Anzahl nicht äquivalenter Classen für die aus ten Wurzeln der Einheit gebildeten complexen Zahlen und die idealen Factoren derselben, J. Reine Angew. Math., Volume 40 (1850), pp. 43-116 | Zbl
[4] Prime factors of cyclotomic class numbers, Math. Comp., Volume 31 (1977), pp. 599-607 | MR | Zbl
[5] Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, 30, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[6] Minus class groups of the fields of the th roots of unity, Math. Comp., Volume 67 (1998), pp. 1225-1245 | MR | Zbl
[7] Program codes of “Prime factors of class number of cyclotomic fields” (http://www.ma.noda.tus.ac.jp/g/tt/jtnb2008/)
[8] Introduction to cyclotomic fields, Springer-Verlag, New York, 2nd ed., 1997 | MR | Zbl
Cited by Sources: