If and are positive integers with and , then the set
is a multiplicative monoid known as an arithmetical congruence monoid (or ACM). For any monoid with units and any we say that is a factorization length of if and only if there exist irreducible elements of and . Let be the set of all such lengths (where whenever ). The Delta-set of the element is defined as the set of gaps in : and the Delta-set of the monoid is given by . We consider the when is an ACM with . This set is fully characterized when for prime and . Bounds on are given when has two or more distinct prime factors
Si et sont des entiers positifs, avec et , l’ensemble
est un monoïde multiplicatif, appelé monoïde de congruence arithmétique (ACM). Pour chaque monoïde avec ses unités et pour chaque , nous dirons que est une longueur de décomposition en facteurs de si et seulement s’il existe des éléments irréductibles tels que . Soit l’ensemble des longueurs (avec pour ). Le Delta-ensemble d’un élément est et le Delta-ensemble du monoïde est . Nous examinons quand est un ACM avec . Cet ensemble est complètement caractérisé quand , un nombre premier et . Quand a plus d’un facteur premier, nous donnons des bornes pour .
@article{JTNB_2008__20_1_45_0, author = {Paul Baginski and Scott T. Chapman and George J. Schaeffer}, title = {On the {Delta} set of a singular arithmetical congruence monoid}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {45--59}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {1}, year = {2008}, doi = {10.5802/jtnb.615}, mrnumber = {2434157}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.615/} }
TY - JOUR AU - Paul Baginski AU - Scott T. Chapman AU - George J. Schaeffer TI - On the Delta set of a singular arithmetical congruence monoid JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 45 EP - 59 VL - 20 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.615/ DO - 10.5802/jtnb.615 LA - en ID - JTNB_2008__20_1_45_0 ER -
%0 Journal Article %A Paul Baginski %A Scott T. Chapman %A George J. Schaeffer %T On the Delta set of a singular arithmetical congruence monoid %J Journal de théorie des nombres de Bordeaux %D 2008 %P 45-59 %V 20 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.615/ %R 10.5802/jtnb.615 %G en %F JTNB_2008__20_1_45_0
Paul Baginski; Scott T. Chapman; George J. Schaeffer. On the Delta set of a singular arithmetical congruence monoid. Journal de théorie des nombres de Bordeaux, Volume 20 (2008) no. 1, pp. 45-59. doi : 10.5802/jtnb.615. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.615/
[1] D.F. Anderson, Elasticity of factorizations in integral domains: a survey. Lecture Notes in Pure and Appl. Math. 189 (1997), 1–29. | MR | Zbl
[2] M. Banister, S. T. Chapman, J. Chaika, W. Meyerson, On a result of James and Niven concerning unique factorization in congruence semigroups. To appear in Elemente der Mathematik. | MR
[3] M. Banister, S. T. Chapman, J. Chaika, W. Meyerson, On the arithmetic of arithmetical congruence monoids. Colloq. Math. 108 (2007), 105–118. | MR
[4] C. Bowles, S.T. Chapman, N. Kaplan, D. Reiser, On -sets of numerical monoids. J. Pure Appl. Algebra 5 (2006), 1–24. | MR | Zbl
[5] S. T. Chapman, A. Geroldinger, Krull domains and their monoids, their sets of lengths, and associated combinatorial problems. Lecture Notes in Pure and Applied Mathematics 189 (1997), 73–112. | Zbl
[6] A. Geroldinger, Uber nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z. 197 (1988), 505–529. | MR | Zbl
[7] A. Geroldinger, F. Halter-Koch, Non-unique factorizations. Algebraic, Combinatorial and Analytic Theory, Chapman & Hall/CRC, 2006. | MR | Zbl
[8] A. Geroldinger, F. Halter-Koch, Congruence monoids. Acta Arith. 112 (2004), 263–296. | MR | Zbl
[9] F. Halter-Koch, Arithmetical semigroups defined by congruences. Semigroup Forum 42 (1991), 59–62. | MR | Zbl
[10] F. Halter-Koch, Elasticity of factorizations in atomic monoids and integral domains. J. Théor. Nombres Bordeaux 7 (1995), 367–385. | Numdam | MR | Zbl
[11] F. Halter-Koch, C-monoids and congruence monoids in Krull domains. Lect. Notes Pure Appl. Math. 241 (2005), 71–98. | MR | Zbl
[12] R. D. James, I. Niven, Unique factorization in multiplicative systems. Proc. Amer. Math. Soc. 5 (1954), 834–838. | MR | Zbl
Cited by Sources: