Si
est un monoïde multiplicatif, appelé monoïde de congruence arithmétique (ACM). Pour chaque monoïde avec ses unités
If
is a multiplicative monoid known as an arithmetical congruence monoid (or ACM). For any monoid
Paul Baginski 1 ; Scott T. Chapman 2 ; George J. Schaeffer 3
@article{JTNB_2008__20_1_45_0, author = {Paul Baginski and Scott T. Chapman and George J. Schaeffer}, title = {On the {Delta} set of a singular arithmetical congruence monoid}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {45--59}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {1}, year = {2008}, doi = {10.5802/jtnb.615}, mrnumber = {2434157}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.615/} }
TY - JOUR AU - Paul Baginski AU - Scott T. Chapman AU - George J. Schaeffer TI - On the Delta set of a singular arithmetical congruence monoid JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 45 EP - 59 VL - 20 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.615/ DO - 10.5802/jtnb.615 LA - en ID - JTNB_2008__20_1_45_0 ER -
%0 Journal Article %A Paul Baginski %A Scott T. Chapman %A George J. Schaeffer %T On the Delta set of a singular arithmetical congruence monoid %J Journal de théorie des nombres de Bordeaux %D 2008 %P 45-59 %V 20 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.615/ %R 10.5802/jtnb.615 %G en %F JTNB_2008__20_1_45_0
Paul Baginski; Scott T. Chapman; George J. Schaeffer. On the Delta set of a singular arithmetical congruence monoid. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 1, pp. 45-59. doi : 10.5802/jtnb.615. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.615/
[1] D.F. Anderson, Elasticity of factorizations in integral domains: a survey. Lecture Notes in Pure and Appl. Math. 189 (1997), 1–29. | MR | Zbl
[2] M. Banister, S. T. Chapman, J. Chaika, W. Meyerson, On a result of James and Niven concerning unique factorization in congruence semigroups. To appear in Elemente der Mathematik. | MR
[3] M. Banister, S. T. Chapman, J. Chaika, W. Meyerson, On the arithmetic of arithmetical congruence monoids. Colloq. Math. 108 (2007), 105–118. | MR
[4] C. Bowles, S.T. Chapman, N. Kaplan, D. Reiser, On
[5] S. T. Chapman, A. Geroldinger, Krull domains and their monoids, their sets of lengths, and associated combinatorial problems. Lecture Notes in Pure and Applied Mathematics 189 (1997), 73–112. | Zbl
[6] A. Geroldinger, Uber nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z. 197 (1988), 505–529. | MR | Zbl
[7] A. Geroldinger, F. Halter-Koch, Non-unique factorizations. Algebraic, Combinatorial and Analytic Theory, Chapman & Hall/CRC, 2006. | MR | Zbl
[8] A. Geroldinger, F. Halter-Koch, Congruence monoids. Acta Arith. 112 (2004), 263–296. | MR | Zbl
[9] F. Halter-Koch, Arithmetical semigroups defined by congruences. Semigroup Forum 42 (1991), 59–62. | MR | Zbl
[10] F. Halter-Koch, Elasticity of factorizations in atomic monoids and integral domains. J. Théor. Nombres Bordeaux 7 (1995), 367–385. | Numdam | MR | Zbl
[11] F. Halter-Koch, C-monoids and congruence monoids in Krull domains. Lect. Notes Pure Appl. Math. 241 (2005), 71–98. | MR | Zbl
[12] R. D. James, I. Niven, Unique factorization in multiplicative systems. Proc. Amer. Math. Soc. 5 (1954), 834–838. | MR | Zbl
- Atomic density of arithmetical congruence monoids, Semigroup Forum, Volume 108 (2024) no. 2, pp. 432-437 | DOI:10.1007/s00233-024-10426-w | Zbl:1548.20094
- On length densities, Forum Mathematicum, Volume 34 (2022) no. 2, pp. 293-306 | DOI:10.1515/forum-2021-0149 | Zbl:1491.13027
- The system of sets of lengths and the elasticity of submonoids of a finite-rank free commutative monoid, Journal of Algebra and its Applications, Volume 19 (2020) no. 7, p. 18 (Id/No 2050137) | DOI:10.1142/s0219498820501376 | Zbl:1471.20039
- On the periodicity of irreducible elements in arithmetical congruence monoids, Integers, Volume 17 (2017), p. paper | Zbl:1433.20015
- The realization problem for delta sets of numerical semigroups, Journal of Commutative Algebra, Volume 9 (2017) no. 3 | DOI:10.1216/jca-2017-9-3-313
- Arithmetic of congruence monoids., Communications in Algebra, Volume 44 (2016) no. 8, pp. 3407-3421 | DOI:10.1080/00927872.2015.1065874 | Zbl:1350.20042
- Arithmetic of seminormal weakly Krull monoids and domains, Journal of Algebra, Volume 444 (2015), pp. 201-245 | DOI:10.1016/j.jalgebra.2015.07.026 | Zbl:1327.13006
- Computation of delta sets of numerical monoids., Monatshefte für Mathematik, Volume 178 (2015) no. 3, pp. 457-472 | DOI:10.1007/s00605-015-0785-9 | Zbl:1343.20061
- How Do You Measure Primality?, The American Mathematical Monthly, Volume 122 (2015) no. 2, p. 121 | DOI:10.4169/amer.math.monthly.122.02.121
- Arithmetic congruence monoids: a survey, Combinatorial and additive number theory. Selected papers based on the presentations at the conferences CANT 2011 and 2012, New York, NY, USA, May 2011 and May 2012, New York, NY: Springer, 2014, pp. 15-38 | DOI:10.1007/978-1-4939-1601-6_2 | Zbl:1371.11002
- Accepted elasticity in local arithmetic congruence monoids., Results in Mathematics, Volume 66 (2014) no. 1-2, pp. 227-245 | DOI:10.1007/s00025-014-0374-6 | Zbl:1308.20052
- Factorization properties of Leamer monoids., Semigroup Forum, Volume 89 (2014) no. 2, pp. 409-421 | DOI:10.1007/s00233-014-9578-z | Zbl:1317.20055
- Irreducible Factorization Lengths and the Elasticity Problem within ℕ, The American Mathematical Monthly, Volume 120 (2013) no. 4, p. 322 | DOI:10.4169/amer.math.monthly.120.04.322
- On the delta set and the Betti elements of a BF-monoid., Arabian Journal of Mathematics, Volume 1 (2012) no. 1, pp. 53-61 | DOI:10.1007/s40065-012-0019-0 | Zbl:1277.20071
- A Variation on the Money-Changing Problem, The American Mathematical Monthly, Volume 119 (2012) no. 5, p. 406 | DOI:10.4169/amer.math.monthly.119.05.406
- Delta Sets of Numerical Monoids Using Nonminimal Sets of Generators, Communications in Algebra, Volume 38 (2010) no. 7, p. 2622 | DOI:10.1080/00927870903045165
- On the Delta set and catenary degree of Krull monoids with infinite cyclic divisor class group., Journal of Pure and Applied Algebra, Volume 214 (2010) no. 8, pp. 1334-1339 | DOI:10.1016/j.jpaa.2009.10.015 | Zbl:1193.20071
- On the elasticity of generalized arithmetical congruence monoids., Results in Mathematics, Volume 58 (2010) no. 3-4, pp. 221-231 | DOI:10.1007/s00025-010-0062-0 | Zbl:1203.20058
- A theorem on accepted elasticity in certain local arithmetical congruence monoids., Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Volume 79 (2009) no. 1, pp. 79-86 | DOI:10.1007/s12188-008-0012-x | Zbl:1194.20057
- Bifurcus semigroups and rings, Involve, a Journal of Mathematics, Volume 2 (2009) no. 3, p. 351 | DOI:10.2140/involve.2009.2.351
Cité par 20 documents. Sources : Crossref, zbMATH