S-extremal strongly modular lattices
Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 3, pp. 683-701.

Un réseau fortement modulaire est dit s-extrémal, s’il maximise le minimum du réseau et son ombre simultanément. La dimension des réseaux s-extrémaux dont le minimum est pair peut être bornée par la théorie des formes modulaires. En particulier de tels réseaux sont extrémaux.

S-extremal strongly modular lattices maximize the minimum of the lattice and its shadow simultaneously. They are a direct generalization of the s-extremal unimodular lattices defined in [6]. If the minimum of the lattice is even, then the dimension of an s-extremal lattices can be bounded by the theory of modular forms. This shows that such lattices are also extremal and that there are only finitely many s-extremal strongly modular lattices of even minimum.

DOI : 10.5802/jtnb.608
Gabriele Nebe 1 ; Kristina Schindelar 1

1 Lehrstuhl D für Mathematik RWTH Aachen 52056 Aachen, Germany
@article{JTNB_2007__19_3_683_0,
     author = {Gabriele Nebe and Kristina Schindelar},
     title = {S-extremal strongly modular lattices},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {683--701},
     publisher = {Universit\'e Bordeaux 1},
     volume = {19},
     number = {3},
     year = {2007},
     doi = {10.5802/jtnb.608},
     mrnumber = {2388794},
     zbl = {1196.11097},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.608/}
}
TY  - JOUR
AU  - Gabriele Nebe
AU  - Kristina Schindelar
TI  - S-extremal strongly modular lattices
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2007
SP  - 683
EP  - 701
VL  - 19
IS  - 3
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.608/
DO  - 10.5802/jtnb.608
LA  - en
ID  - JTNB_2007__19_3_683_0
ER  - 
%0 Journal Article
%A Gabriele Nebe
%A Kristina Schindelar
%T S-extremal strongly modular lattices
%J Journal de théorie des nombres de Bordeaux
%D 2007
%P 683-701
%V 19
%N 3
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.608/
%R 10.5802/jtnb.608
%G en
%F JTNB_2007__19_3_683_0
Gabriele Nebe; Kristina Schindelar. S-extremal strongly modular lattices. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 3, pp. 683-701. doi : 10.5802/jtnb.608. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.608/

[1] N.G. de Bruijn, Asymptotic methods in analysis. 2nd edition, North Holland (1961). | Zbl

[2] J. Cannon et al., The Magma Computational Algebra System for Algebra, Number Theory and Geometry. Published electronically at http://magma.maths.usyd.edu.au/magma/.

[3] J. H. Conway, N. J. A. Sloane, A note on optimal unimodular lattices. J. Number Theory 72 (1998), no. 2, 357–362. | MR | Zbl

[4] J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups. Springer, 3. edition, 1998. | Zbl

[5] N. D. Elkies, Lattices and codes with long shadows. Math. Res. Lett. 2 (1995), no. 5, 643–651. | MR | Zbl

[6] P. Gaborit, A bound for certain s-extremal lattices and codes. Archiv der Mathematik 89 (2007), 143–151. | MR | Zbl

[7] M. Kneser, Klassenzahlen definiter quadratischer Formen. Archiv der Math. 8 (1957), 241–250. | MR | Zbl

[8] C. L. Mallows, A. M. Odlysko, N. J. A. Sloane, Upper bounds for modular forms, lattices and codes. J. Alg. 36 (1975), 68–76. | MR | Zbl

[9] G. Nebe, Strongly modular lattices with long shadow. J. T. Nombres Bordeaux 16 (2004), 187–196. | Numdam | MR | Zbl

[10] G. Nebe, B. Venkov, Unimodular lattices with long shadow. J. Number Theory 99 (2003), 307–317. | MR | Zbl

[11] H.-G. Quebbemann, Atkin-Lehner eigenforms and strongly modular lattices. L’Ens. Math. 43 (1997), 55–65. | Zbl

[12] E.M. Rains, New asymptotic bounds for self-dual codes and lattices. IEEE Trans. Inform. Theory 49 (2003), no. 5, 1261–1274. | MR | Zbl

[13] E.M. Rains, N.J.A. Sloane, The shadow theory of modular and unimodular lattices. J. Number Th. 73 (1998), 359–389. | MR | Zbl

[14] R. Scharlau, R. Schulze-Pillot, Extremal lattices. In Algorithmic algebra and number theory, Herausgegeben von B. H. Matzat, G. M. Greuel, G. Hiss. Springer, 1999, 139–170. | MR | Zbl

[15] K. Schindelar, Stark modulare Gitter mit langem Schatten. Diplomarbeit, Lehrstuhl D für Mathematik, RWTH Aachen (2006).

[16] E.T. Whittaker, G.N. Watson, A course of modern analysis (4th edition) Cambridge University Press, 1963. | MR

Cité par Sources :