Odd perfect polynomials over 𝔽2
Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 165-174.

Un polynôme A𝔽2[x] est dit parfait s’il est égal à la somme de tous ses diviseurs et il est dit impair s’il n’a pas de facteurs de degré 1. Il n’y a pas de polynômes parfaits impairs ayant 3 facteurs irréductibles. Il n’y a pas non plus de polynômes parfaits impairs ayant au plus 9 facteurs irréductibles dans le cas où tous les exposants sont égaux à 2.

A perfect polynomial over 𝔽2 is a polynomial A𝔽2[x] that equals the sum of all its divisors. If gcd(A,x2+x)=1 then we say that A is odd. In this paper we show the non-existence of odd perfect polynomials with either three prime divisors or with at most nine prime divisors provided that all exponents are equal to 2.

DOI : 10.5802/jtnb.579

Luis H. Gallardo 1 ; Olivier Rahavandrainy 1

1 Université de Brest 6, Avenue Le Gorgeu, C.S. 93837 29238 Brest cedex 3, France
@article{JTNB_2007__19_1_165_0,
     author = {Luis H. Gallardo and Olivier Rahavandrainy},
     title = {Odd perfect polynomials over ${\mathbb{F}_2}$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {165--174},
     publisher = {Universit\'e Bordeaux 1},
     volume = {19},
     number = {1},
     year = {2007},
     doi = {10.5802/jtnb.579},
     mrnumber = {2332059},
     zbl = {1145.11081},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.579/}
}
TY  - JOUR
AU  - Luis H. Gallardo
AU  - Olivier Rahavandrainy
TI  - Odd perfect polynomials over ${\mathbb{F}_2}$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2007
SP  - 165
EP  - 174
VL  - 19
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.579/
DO  - 10.5802/jtnb.579
LA  - en
ID  - JTNB_2007__19_1_165_0
ER  - 
%0 Journal Article
%A Luis H. Gallardo
%A Olivier Rahavandrainy
%T Odd perfect polynomials over ${\mathbb{F}_2}$
%J Journal de théorie des nombres de Bordeaux
%D 2007
%P 165-174
%V 19
%N 1
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.579/
%R 10.5802/jtnb.579
%G en
%F JTNB_2007__19_1_165_0
Luis H. Gallardo; Olivier Rahavandrainy. Odd perfect polynomials over ${\mathbb{F}_2}$. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 165-174. doi : 10.5802/jtnb.579. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.579/

[1] E. F. Canaday, The sum of the divisors of a polynomial. Duke Math. J. 8 (1941), 721–737. | MR | Zbl

[2] T. B. Beard Jr, James. R. Oconnell Jr, Karen I. West, Perfect polynomials over GF(q). Rend. Accad. Lincei 62 (1977), 283–291. | MR | Zbl

[3] L. Gallardo, O. Rahavandrainy, On perfect polynomials over 𝔽4. Portugaliae Mathematica 62 - Fasc. 1 (2005), 109–122. | MR | Zbl

[4] L. Gallardo, O. Rahavandrainy, Perfect polynomials over 𝔽4 with less than five prime factors. Portugaliae Mathematica 64 - Fasc. 1 (2007), 21–38. | MR

[5] Rudolf Lidl, Harald Niederreiter, Finite Fields, Encyclopedia of Mathematics and its applications. Cambridge University Press, 1983, (Reprinted 1987). | MR | Zbl

[6] Rudolf Steuerwald, Verschärfung einer notwendigen Bedingung für die Existenz einer ungeraden vollkommenen Zahl. S. B. math.-nat. Abt. Bayer. Akad. Wiss München (1937), 69–72. | Zbl

  • L. H. Gallardo On the index of special perfect polynomials, Carpathian Mathematical Publications, Volume 15 (2023) no. 2, pp. 507-513 | DOI:10.15330/cmp.15.2.507-513 | Zbl:1540.11171
  • Haissam Chehade; Domoo Miari; Yousuf Alkhezi Bi-Unitary Superperfect Polynomials over 𝔽2 with at Most Two Irreducible Factors, Symmetry, Volume 15 (2023) no. 12, p. 2134 | DOI:10.3390/sym15122134
  • Luis H. Gallardo Fixed points of the sum of divisors function on F2[x], Glasnik Matematički. Serija III, Volume 57 (2022) no. 2, pp. 221-237 | DOI:10.3336/gm.57.2.04 | Zbl:1546.11180
  • Olivier Rahavandrainy Some families of unitary perfect polynomials over F2, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 359 (2021) no. 2, pp. 123-130 | DOI:10.5802/crmath.149 | Zbl:1501.11108
  • Luis H. Gallardo On the prime factors of Φp(M), Integers, Volume 21 (2021), p. paper | Zbl:1489.11205
  • Luis H. Gallardo Mason-Stothers theorem and perfect binary polynomials, International Electronic Journal of Algebra (IEJA), Volume 28 (2020), pp. 1-8 | Zbl:1464.11133
  • Luis H. Gallardo; Olivier Rahavandrainy A polynomial variant of perfect numbers, Journal of Integer Sequences, Volume 23 (2020) no. 8, p. article | Zbl:1480.11007
  • Luis H. Gallardo; Olivier Rahavandrainy On Mersenne polynomials over F2, Finite Fields and their Applications, Volume 59 (2019), pp. 284-296 | DOI:10.1016/j.ffa.2019.06.006 | Zbl:1459.11231
  • U. Caner Cengiz; Paul Pollack; Enrique Treviño Counting perfect polynomials, Finite Fields and their Applications, Volume 47 (2017), pp. 242-255 | DOI:10.1016/j.ffa.2017.05.006 | Zbl:1409.11132
  • Luis H. Gallardo; Olivier Rahavandrainy Characterization of sporadic perfect polynomials over F2, Functiones et Approximatio. Commentarii Mathematici, Volume 55 (2016) no. 1, pp. 7-21 | DOI:10.7169/facm/2016.55.1.1 | Zbl:1407.11140
  • L. H. Gallardo; O. Rahavandrainy Perfect polynomials over Fp with p+1 irreducible divisors, Acta Mathematica Universitatis Comenianae. New Series, Volume 83 (2014) no. 1, pp. 93-112 | Zbl:1324.11069
  • Luis H. Gallardo; Olivier Rahavandrainy On even (unitary) perfect polynomials over F2, Finite Fields and their Applications, Volume 18 (2012) no. 5, pp. 920-932 | DOI:10.1016/j.ffa.2012.06.004 | Zbl:1273.11175
  • Luis H. Gallardo; Olivier Rahavandrainy All unitary perfect polynomials over F2 with at most four distinct irreducible factors, Journal of Symbolic Computation, Volume 47 (2012) no. 4, pp. 492-502 | DOI:10.1016/j.jsc.2011.09.009 | Zbl:1267.11119
  • Luis H. Gallardo; Olivier Rahavandrainy On perfect polynomials over Fp with p irreducible factors, Portugaliae Mathematica. Nova Série, Volume 69 (2012) no. 4, pp. 283-303 | DOI:10.4171/pm/1918 | Zbl:1335.11101
  • Luis H. Gallardo; Olivier Rahavandrainy Unitary perfect polynomials over F4 with less than five prime factors, Functiones et Approximatio. Commentarii Mathematici, Volume 45 (2011) no. 1, pp. 67-78 | DOI:10.7169/facm/1317045232 | Zbl:1238.11109
  • Luis H. Gallardo; Olivier Rahavandrainy There is no odd perfect polynomial over F2 with four prime factors, Portugaliae Mathematica. Nova Série, Volume 66 (2009) no. 2, pp. 131-145 | DOI:10.4171/pm/1836 | Zbl:1193.11116
  • Luis H. Gallardo; Olivier Rahavandrainy On splitting perfect polynomials over Fp2, Portugaliae Mathematica. Nova Série, Volume 66 (2009) no. 3, pp. 261-273 | DOI:10.4171/pm/1843 | Zbl:1209.11105

Cité par 17 documents. Sources : Crossref, zbMATH