Pour dans la bandre critique , on note le terme d’erreur de la formule asymptotique de (pour grand). C’est un analogue du terme d’erreur classique (). L’étude de a une longue histoire, mais celle de est assez récente. En particulier, lorsque , on connaît peu d’informations sur . Pour en gagner, nous étudions la moyenne . Dans cet article, nous donnons une expression en série de type Atkinson et explorons quelques une des propriétés de la moyenne comme fonction en .
Let be the error term in the mean square formula of the Riemann zeta-function in the critical strip . It is an analogue of the classical error term . The research of has a long history but the investigation of is quite new. In particular there is only a few information known about for . As an exploration, we study its mean value . In this paper, we give it an Atkinson-type series expansion and explore many of its properties as a function of .
@article{JTNB_2006__18_2_445_0, author = {Yuk-Kam Lau}, title = {A study of the mean value of the error term in the mean square formula of the {Riemann} zeta-function in the critical strip $3/4\le \sigma < 1$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {445--470}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {2}, year = {2006}, doi = {10.5802/jtnb.553}, mrnumber = {2289433}, zbl = {05135398}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.553/} }
TY - JOUR AU - Yuk-Kam Lau TI - A study of the mean value of the error term in the mean square formula of the Riemann zeta-function in the critical strip $3/4\le \sigma < 1$ JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 445 EP - 470 VL - 18 IS - 2 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.553/ DO - 10.5802/jtnb.553 LA - en ID - JTNB_2006__18_2_445_0 ER -
%0 Journal Article %A Yuk-Kam Lau %T A study of the mean value of the error term in the mean square formula of the Riemann zeta-function in the critical strip $3/4\le \sigma < 1$ %J Journal de théorie des nombres de Bordeaux %D 2006 %P 445-470 %V 18 %N 2 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.553/ %R 10.5802/jtnb.553 %G en %F JTNB_2006__18_2_445_0
Yuk-Kam Lau. A study of the mean value of the error term in the mean square formula of the Riemann zeta-function in the critical strip $3/4\le \sigma < 1$. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 2, pp. 445-470. doi : 10.5802/jtnb.553. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.553/
[1] P.M. Bleher, Z. Cheng, F.J. Dyson, J.L. Lebowitz, Distribution of the Error Term for the Number of Lattice Points Inside a Shifted Circle. Comm. Math. Phys. 154 (1993), 433–469. | MR | Zbl
[2] J.L. Hafner, A. Ivić, On the Mean-Square of the Riemann Zeta-Function on the Critical Line. J. Number Theory 32 (1989), 151–191. | MR | Zbl
[3] D.R. Heath-Brown, The Distribution and Moments of the Error Term in the Dirichlet Divisor Problem. Acta Arith. 60 (1992), 389–415. | MR | Zbl
[4] D.R. Heath-Brown, K. Tsang, Sign Changes of , and . J. Number Theory 49 (1994), 73–83. | MR | Zbl
[5] A. Ivić, The Riemann Zeta-Function. Wiley, New York, 1985. | MR | Zbl
[6] A. Ivić, Mean values of the Riemann zeta function. Lectures on Math. 82, Tata Instit. Fund. Res., Springer, 1991. | MR | Zbl
[7] A. Ivić, K. Matsumoto, On the error term in the mean square formula for the Riemann zeta-function in the critical strip. Monatsh. Math. 121 (1996), 213–229. | MR | Zbl
[8] M. Jutila, On the divisor problem for short intervals. Ann. Univ. Turkuensis Ser. A I 186 (1984), 23–30. | MR | Zbl
[9] M. Jutila, Transformation Formulae for Dirichlet Polynomials. J. Number Theory 18 (1984), 135–156. | MR | Zbl
[10] I. Kiuchi, On an exponential sum involving the arithmetical function . Math. J. Okayama Univ. 29 (1987), 193–205. | MR | Zbl
[11] I. Kiuchi, K. Matsumoto, The resemblance of the behaviour of the remainder terms , and . Un Sieve Methods, Exponential Sums, and their Applications in Number Theory, G.R.H. Greaves et al.(eds.), London Math. Soc. LN 237, Cambridge Univ. Press (1997), 255–273. | MR | Zbl
[12] Y.-K. Lau, On the mean square formula for the Riemann zeta-function on the critical line. Monatsh. Math. 117 (1994), 103–106. | EuDML | MR | Zbl
[13] Y.-K. Lau, On the limiting distribution of a generalized divisor problem for the case . Acta Arith. 98 (2001), 229–236. | EuDML | MR | Zbl
[14] Y.-K. Lau, On the error term of the mean square formula for the Riemann zeta-function in the critical strip . Acta Arith. 102 (2002), 157–165. | EuDML | MR | Zbl
[15] Y.-K. Lau, K.-M. Tsang, -results of the Error Term in the Mean Square Formula of the Riemann Zeta-function in the Critical Strip. Acta Arith. 98 (2001), 53–69. | EuDML | MR | Zbl
[16] Y.-K. Lau, K.-M. Tsang, Moments of the probability density functions of error terms in divisor problems. Proc. Amer. Math. Soc. 133 (2005), 1283–1290. | MR | Zbl
[17] K. Matsumoto, The mean square of the Riemann zeta-function in the critical strip. Japan J. Math. 15 (1989), 1–13. | MR | Zbl
[18] K. Matsumoto, Recent Developments in the Mean Square Theory of the Riemann Zeta and Other Zeta-Functions. In Number Theory, Trends Math., Birhkäuser, Basel, (2000), 241–286. | MR | Zbl
[19] K. Matsumoto, T. Meurman, The mean square of the Riemann zeta-function in the critical strip III. Acta Arith. 64 (1993), 357–382. | EuDML | MR | Zbl
[20] K. Matsumoto, T. Meurman, The mean square of the Riemann zeta-function in the critical strip II. Acta Arith. 68 (1994), 369–382. | EuDML | MR | Zbl
[21] T. Meurman, On the mean square of the Riemann zeta-function. Quart. J. Math. Oxford (2) 38 (1987), 337–343. | MR | Zbl
[22] T. Meurman, The mean square of the error term in a generalization of Dirichlet’s divisor problem. Acta Arith. 74 (1996), 351–364. | EuDML | MR | Zbl
[23] K.-M. Tsang, Higher power moments of , and . Proc. London Math. Soc. (3) 65 (1992), 65–84. | MR | Zbl
Cité par Sources :