Nous donnons une minoration explicite pour les formes linéaires en deux logarithmes. Pour cela nous spécialisons la méthode de Schneider avec multiplicité décrite dans [10]. Nous améliorons substantiellement les constantes numériques intervenant dans les énoncés existants pour le cas de deux logarithmes, obtenus avec la méthode de Baker ou bien celle de Schneider avec multiplicité. Notre constante est de l’ordre de
We give an explicit lower bound for linear forms in two logarithms. For this we specialize the so-called Schneider method with multiplicity described in [10]. We substantially improve the numerical constants involved in existing statements for linear forms in two logarithms, obtained from Baker’s method or Schneider’s method with multiplicity. Our constant is around
@article{JTNB_2006__18_1_125_0, author = {Nicolas Gouillon}, title = {Explicit lower bounds for linear forms in two logarithms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {125--146}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {1}, year = {2006}, doi = {10.5802/jtnb.537}, mrnumber = {2245879}, zbl = {05070451}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.537/} }
TY - JOUR AU - Nicolas Gouillon TI - Explicit lower bounds for linear forms in two logarithms JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 125 EP - 146 VL - 18 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.537/ DO - 10.5802/jtnb.537 LA - en ID - JTNB_2006__18_1_125_0 ER -
%0 Journal Article %A Nicolas Gouillon %T Explicit lower bounds for linear forms in two logarithms %J Journal de théorie des nombres de Bordeaux %D 2006 %P 125-146 %V 18 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.537/ %R 10.5802/jtnb.537 %G en %F JTNB_2006__18_1_125_0
Nicolas Gouillon. Explicit lower bounds for linear forms in two logarithms. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 125-146. doi : 10.5802/jtnb.537. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.537/
[1] Alan Baker, Transcendental number theory. Cambridge University Press, London, 1975. | MR | Zbl
[2] Nicolas Gouillon, Un lemme de zéros. C. R. Math. Acad. Sci. Paris, 335 (2) (2002), 167–170. | MR | Zbl
[3] Nicolas Gouillon, Minorations explicites de formes linéaires en deux logarithmes. Thesis (2003) : http://tel.ccsd.cnrs.fr/documents/archives0/00/00/39/64/index_fr.html
[4] Michel Laurent, Linear forms in two logarithms and interpolation determinants. Acta Arith. 66 (2) (1994), 181–199. | MR | Zbl
[5] Michel Laurent, Maurice Mignotte, Yuri Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation. J. Number Theory 55 (2) (1995), 285–321. | MR | Zbl
[6] D. W. Masser, On polynomials and exponential polynomials in several complex variables. Invent. Math. 63 (1) (1981), 81–95. | MR | Zbl
[7] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (6) (2000), 125–180. | MR | Zbl
[8] Maurice Mignotte, Michel Waldschmidt, Linear forms in two logarithms and Schneider’s method. II. Acta Arith. 53 (3) (1989), 251–287. | MR | Zbl
[9] Michel Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques. Canad. J. Math. 45 (1) (1993), 176–224. | MR | Zbl
[10] Michel Waldschmidt, Diophantine Approximation on Linear Algebraic Groups. Springer-Verlag, 1999. | MR | Zbl
[11] Kun Rui Yu, Linear forms in
- Lower bounds for linear forms in two p-adic logarithms, Journal of Number Theory, Volume 266 (2025), p. 295 | DOI:10.1016/j.jnt.2024.07.012
- Möbius Randomness Law for Frobenius Traces of Ordinary Curves, Canadian Mathematical Bulletin, Volume 64 (2021) no. 1, p. 192 | DOI:10.4153/s0008439520000363
- Note on a problem of Ramanujan, Proceedings - Mathematical Sciences, Volume 131 (2021) no. 2 | DOI:10.1007/s12044-021-00611-0
- Roots of L-functions of characters over function fields, generic linear independence and biases, Algebra Number Theory, Volume 14 (2020) no. 5, p. 1291 | DOI:10.2140/ant.2020.14.1291
- The shrinkage type of knots, Bulletin of the London Mathematical Society, Volume 49 (2017) no. 3, p. 428 | DOI:10.1112/blms.12031
- On Stability Estimates of a Characterization of the Cauchy Distribution, Journal of Mathematical Sciences, Volume 200 (2014) no. 4, p. 505 | DOI:10.1007/s10958-014-1937-5
- UPPER BOUNDS FOR THE NUMBER OF SOLUTIONS TO QUARTIC THUE EQUATIONS, International Journal of Number Theory, Volume 08 (2012) no. 02, p. 335 | DOI:10.1142/s1793042112500200
- The Last Period, Rational Number Theory in the 20th Century (2012), p. 307 | DOI:10.1007/978-0-85729-532-3_6
- On the Values of Kloosterman Sums, IEEE Transactions on Information Theory, Volume 55 (2009) no. 6, p. 2599 | DOI:10.1109/tit.2009.2018320
- On the solutions of a parametric family of cubic Thue equations, Bulletin of the Brazilian Mathematical Society, New Series, Volume 39 (2008) no. 4, p. 537 | DOI:10.1007/s00574-008-0003-7
- Stability of a characterization by the identical distribution of linear forms, Statistics, Volume 41 (2007) no. 4, p. 345 | DOI:10.1080/02331880701342769
Cité par 11 documents. Sources : Crossref