Explicit lower bounds for linear forms in two logarithms
Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 125-146.

Nous donnons une minoration explicite pour les formes linéaires en deux logarithmes. Pour cela nous spécialisons la méthode de Schneider avec multiplicité décrite dans [10]. Nous améliorons substantiellement les constantes numériques intervenant dans les énoncés existants pour le cas de deux logarithmes, obtenus avec la méthode de Baker ou bien celle de Schneider avec multiplicité. Notre constante est de l’ordre de 5.104 au lieu de 108.

We give an explicit lower bound for linear forms in two logarithms. For this we specialize the so-called Schneider method with multiplicity described in [10]. We substantially improve the numerical constants involved in existing statements for linear forms in two logarithms, obtained from Baker’s method or Schneider’s method with multiplicity. Our constant is around 5.104 instead of 108.

DOI : 10.5802/jtnb.537

Nicolas Gouillon 1

1 Institut de Mathématiques de Luminy 163, Avenue de Luminy, case 907 13288 Marseille Cedex 9, France
@article{JTNB_2006__18_1_125_0,
     author = {Nicolas Gouillon},
     title = {Explicit lower bounds for linear forms in two logarithms},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {125--146},
     publisher = {Universit\'e Bordeaux 1},
     volume = {18},
     number = {1},
     year = {2006},
     doi = {10.5802/jtnb.537},
     mrnumber = {2245879},
     zbl = {05070451},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.537/}
}
TY  - JOUR
AU  - Nicolas Gouillon
TI  - Explicit lower bounds for linear forms in two logarithms
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2006
SP  - 125
EP  - 146
VL  - 18
IS  - 1
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.537/
DO  - 10.5802/jtnb.537
LA  - en
ID  - JTNB_2006__18_1_125_0
ER  - 
%0 Journal Article
%A Nicolas Gouillon
%T Explicit lower bounds for linear forms in two logarithms
%J Journal de théorie des nombres de Bordeaux
%D 2006
%P 125-146
%V 18
%N 1
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.537/
%R 10.5802/jtnb.537
%G en
%F JTNB_2006__18_1_125_0
Nicolas Gouillon. Explicit lower bounds for linear forms in two logarithms. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 125-146. doi : 10.5802/jtnb.537. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.537/

[1] Alan Baker, Transcendental number theory. Cambridge University Press, London, 1975. | MR | Zbl

[2] Nicolas Gouillon, Un lemme de zéros. C. R. Math. Acad. Sci. Paris, 335 (2) (2002), 167–170. | MR | Zbl

[3] Nicolas Gouillon, Minorations explicites de formes linéaires en deux logarithmes. Thesis (2003) : http://tel.ccsd.cnrs.fr/documents/archives0/00/00/39/64/index_fr.html

[4] Michel Laurent, Linear forms in two logarithms and interpolation determinants. Acta Arith. 66 (2) (1994), 181–199. | MR | Zbl

[5] Michel Laurent, Maurice Mignotte, Yuri Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation. J. Number Theory 55 (2) (1995), 285–321. | MR | Zbl

[6] D. W. Masser, On polynomials and exponential polynomials in several complex variables. Invent. Math. 63 (1) (1981), 81–95. | MR | Zbl

[7] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (6) (2000), 125–180. | MR | Zbl

[8] Maurice Mignotte, Michel Waldschmidt, Linear forms in two logarithms and Schneider’s method. II. Acta Arith. 53 (3) (1989), 251–287. | MR | Zbl

[9] Michel Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques. Canad. J. Math. 45 (1) (1993), 176–224. | MR | Zbl

[10] Michel Waldschmidt, Diophantine Approximation on Linear Algebraic Groups. Springer-Verlag, 1999. | MR | Zbl

[11] Kun Rui Yu, Linear forms in p-adic logarithms. Acta Arith. 53 (2) (1989), 107–186. | MR | Zbl

  • Kwok Chi Chim Lower bounds for linear forms in two p-adic logarithms, Journal of Number Theory, Volume 266 (2025), p. 295 | DOI:10.1016/j.jnt.2024.07.012
  • Min Sha; Igor E. Shparlinski Möbius Randomness Law for Frobenius Traces of Ordinary Curves, Canadian Mathematical Bulletin, Volume 64 (2021) no. 1, p. 192 | DOI:10.4153/s0008439520000363
  • C. G. Karthick Babu; Usha K Sangale Note on a problem of Ramanujan, Proceedings - Mathematical Sciences, Volume 131 (2021) no. 2 | DOI:10.1007/s12044-021-00611-0
  • Corentin Perret-Gentil Roots of L-functions of characters over function fields, generic linear independence and biases, Algebra Number Theory, Volume 14 (2020) no. 5, p. 1291 | DOI:10.2140/ant.2020.14.1291
  • Holger Kammeyer The shrinkage type of knots, Bulletin of the London Mathematical Society, Volume 49 (2017) no. 3, p. 428 | DOI:10.1112/blms.12031
  • R. Yanushkevichius On Stability Estimates of a Characterization of the Cauchy Distribution, Journal of Mathematical Sciences, Volume 200 (2014) no. 4, p. 505 | DOI:10.1007/s10958-014-1937-5
  • SHABNAM AKHTARI UPPER BOUNDS FOR THE NUMBER OF SOLUTIONS TO QUARTIC THUE EQUATIONS, International Journal of Number Theory, Volume 08 (2012) no. 02, p. 335 | DOI:10.1142/s1793042112500200
  • Władysław Narkiewicz The Last Period, Rational Number Theory in the 20th Century (2012), p. 307 | DOI:10.1007/978-0-85729-532-3_6
  • Igor E. Shparlinski On the Values of Kloosterman Sums, IEEE Transactions on Information Theory, Volume 55 (2009) no. 6, p. 2599 | DOI:10.1109/tit.2009.2018320
  • Alain Togbé On the solutions of a parametric family of cubic Thue equations, Bulletin of the Brazilian Mathematical Society, New Series, Volume 39 (2008) no. 4, p. 537 | DOI:10.1007/s00574-008-0003-7
  • Romanas Yanushkevichius; Olga Yanushkevichiene Stability of a characterization by the identical distribution of linear forms, Statistics, Volume 41 (2007) no. 4, p. 345 | DOI:10.1080/02331880701342769

Cité par 11 documents. Sources : Crossref