Special values of multiple gamma functions
Journal de Théorie des Nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 113-123.

Nous donnons une formule de type Chowla-Selberg qui relie une généralisation de la fonction éta à GL(n) avec les fonctions gamma multiples. Nous présentons également quelques identités de produit infinis pour certaines valeurs spéciales de la fonction gamma multiple.

We give a Chowla-Selberg type formula that connects a generalization of the eta-function to GL(n) with multiple gamma functions. We also present some simple infinite product identities for certain special values of the multiple gamma function.

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.536
@article{JTNB_2006__18_1_113_0,
     author = {William Duke and \"Ozlem Imamoḡlu},
     title = {Special values of multiple gamma functions},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {113--123},
     publisher = {Universit\'e Bordeaux 1},
     volume = {18},
     number = {1},
     year = {2006},
     doi = {10.5802/jtnb.536},
     zbl = {05070450},
     mrnumber = {2245878},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.536/}
}
William Duke; Özlem Imamoḡlu. Special values of multiple gamma functions. Journal de Théorie des Nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 113-123. doi : 10.5802/jtnb.536. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.536/

[2] E. W. Barnes, On the theory of the multiple Gamma function. Cambr. Trans. 19 (1904), 374–425.

[3] J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic space. Harmonic analysis and number theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. | MR 1483315 | Zbl 0888.11001

[4] P. Epstein, Zur Theorie allgemeiner Zetafunktionen. Math. Ann. 56 (1903), 615–644. | MR 1511190

[5] E. Hecke, Analytische Arithmetik der positive quadratischen Formen, (1940) # 41 in Mathematische Werke. | MR 3665 | Zbl 0024.00902

[6] M.J. Liouville, Journal de Mathématiques Pure et Appliquées.

[7] S. Minakshisundaram, Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds. Canadian J. Math. 1 (1949), 242–256. | MR 31145 | Zbl 0041.42701

[8] J. Dufresnoy, Ch. Pisot, Sur la relation fonctionnelle f(x+1)-f(x)=ϕ(x). Bull. Soc. Math. Belg. 15 (1963), 259–270. | MR 161055 | Zbl 0122.09802

[9] P. Sarnak, Determinants of Laplacians; heights and finiteness. Analysis, et cetera, 601–622, Academic Press, Boston, MA, 1990. | MR 1039364 | Zbl 0703.53037

[10] S. Selberg, S. Chowla, On Epstein’s zeta-function. J. Reine Angew. Math. 227 (1967), 86–110. | MR 215797 | Zbl 0166.05204

[11] T. Shintani, On special values of zeta functions of totally real algebraic number fields. Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 591–597, Acad. Sci. Fennica, Helsinki, 1980. | MR 562660 | Zbl 0426.12008

[12] C. L. Siegel, Über die analytische Theorie der quadratischen Formen. Ann. of Math. (2) 36 (1935), no. 3, 527–606. [in Gesammelte Abhandlungen] | MR 1503238 | Zbl 0012.19703

[13] C. L. Siegel, Lectures on advanced analytic number theory. Notes by S. Raghavan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 23 Tata Institute of Fundamental Research, Bombay 1965. | MR 262150 | Zbl 0278.10001

[14] H. M. Srivastava, J. Choi, Series associated with the zeta and related functions. Kluwer Academic Publishers, Dordrecht, 2001. | MR 1849375 | Zbl 1014.33001

[15] A. Terras, Bessel series expansions of the Epstein zeta function and the functional equation. Trans. Amer. Math. Soc. 183 (1973), 477–486. | MR 323735 | Zbl 0274.10039

[16] I. Vardi, Determinants of Laplacians and multiple gamma functions. SIAM J. Math. Anal. 19 (1988), no. 2, 493–507. | MR 930041 | Zbl 0641.33003

[17] B. A. Venkov, Elementary number theory. Translated from the Russian and edited by Helen Alderson Wolters-Noordhoff Publishing, Groningen 1970. | MR 265267 | Zbl 0204.37101

[18] M.-F. Vignéras, L’équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire PSL(2,). Journées Arithmétiques de Luminy , 235–249, Astérisque 61 , Soc. Math. France, Paris, 1979. | MR 556676 | Zbl 0401.10036