We give a Chowla-Selberg type formula that connects a generalization of the eta-function to with multiple gamma functions. We also present some simple infinite product identities for certain special values of the multiple gamma function.
Nous donnons une formule de type Chowla-Selberg qui relie une généralisation de la fonction éta à avec les fonctions gamma multiples. Nous présentons également quelques identités de produit infinis pour certaines valeurs spéciales de la fonction gamma multiple.
@article{JTNB_2006__18_1_113_0, author = {William Duke and \"Ozlem Imamoḡlu}, title = {Special values of multiple gamma functions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {113--123}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {1}, year = {2006}, doi = {10.5802/jtnb.536}, mrnumber = {2245878}, zbl = {05070450}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.536/} }
TY - JOUR AU - William Duke AU - Özlem Imamoḡlu TI - Special values of multiple gamma functions JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 113 EP - 123 VL - 18 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.536/ DO - 10.5802/jtnb.536 LA - en ID - JTNB_2006__18_1_113_0 ER -
%0 Journal Article %A William Duke %A Özlem Imamoḡlu %T Special values of multiple gamma functions %J Journal de théorie des nombres de Bordeaux %D 2006 %P 113-123 %V 18 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.536/ %R 10.5802/jtnb.536 %G en %F JTNB_2006__18_1_113_0
William Duke; Özlem Imamoḡlu. Special values of multiple gamma functions. Journal de théorie des nombres de Bordeaux, Volume 18 (2006) no. 1, pp. 113-123. doi : 10.5802/jtnb.536. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.536/
[1] V. Adamchik, Multiple Gamma Function and Its Application to Computation of Series. Ramanujan Journal 9 (2005), 271–288. | MR | Zbl
[2] E. W. Barnes, On the theory of the multiple Gamma function. Cambr. Trans. 19 (1904), 374–425.
[3] J. Elstrodt, F. Grunewald, J. Mennicke, Groups acting on hyperbolic space. Harmonic analysis and number theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. | MR | Zbl
[4] P. Epstein, Zur Theorie allgemeiner Zetafunktionen. Math. Ann. 56 (1903), 615–644. | MR
[5] E. Hecke, Analytische Arithmetik der positive quadratischen Formen, (1940) # 41 in Mathematische Werke. | MR | Zbl
[6] M.J. Liouville, Journal de Mathématiques Pure et Appliquées.
[7] S. Minakshisundaram, Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds. Canadian J. Math. 1 (1949), 242–256. | MR | Zbl
[8] J. Dufresnoy, Ch. Pisot, Sur la relation fonctionnelle . Bull. Soc. Math. Belg. 15 (1963), 259–270. | MR | Zbl
[9] P. Sarnak, Determinants of Laplacians; heights and finiteness. Analysis, et cetera, 601–622, Academic Press, Boston, MA, 1990. | MR | Zbl
[10] S. Selberg, S. Chowla, On Epstein’s zeta-function. J. Reine Angew. Math. 227 (1967), 86–110. | MR | Zbl
[11] T. Shintani, On special values of zeta functions of totally real algebraic number fields. Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 591–597, Acad. Sci. Fennica, Helsinki, 1980. | MR | Zbl
[12] C. L. Siegel, Über die analytische Theorie der quadratischen Formen. Ann. of Math. (2) 36 (1935), no. 3, 527–606. [in Gesammelte Abhandlungen] | MR | Zbl
[13] C. L. Siegel, Lectures on advanced analytic number theory. Notes by S. Raghavan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 23 Tata Institute of Fundamental Research, Bombay 1965. | MR | Zbl
[14] H. M. Srivastava, J. Choi, Series associated with the zeta and related functions. Kluwer Academic Publishers, Dordrecht, 2001. | MR | Zbl
[15] A. Terras, Bessel series expansions of the Epstein zeta function and the functional equation. Trans. Amer. Math. Soc. 183 (1973), 477–486. | MR | Zbl
[16] I. Vardi, Determinants of Laplacians and multiple gamma functions. SIAM J. Math. Anal. 19 (1988), no. 2, 493–507. | MR | Zbl
[17] B. A. Venkov, Elementary number theory. Translated from the Russian and edited by Helen Alderson Wolters-Noordhoff Publishing, Groningen 1970. | MR | Zbl
[18] M.-F. Vignéras, L’équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire . Journées Arithmétiques de Luminy , 235–249, Astérisque 61 , Soc. Math. France, Paris, 1979. | MR | Zbl
Cited by Sources: