Soit un nombre premier et soient . Soit la norme de sous . Ainsi est une extension purement ramifiée d’anneaux de valuation discrète de degré . Le polynôme minimal de sur est un polynôme de Eisenstein ; nous donnons des bornes inférieures pour les -valuations de ses coefficients. L’analogue dans le cas d’un corps de fonctions, comme introduit par Carlitz et Hayes, est etudié de même.
Let be a prime, let . Let be the norm of under , so that is a purely ramified extension of discrete valuation rings of degree . The minimal polynomial of over is an Eisenstein polynomial; we give lower bounds for its coefficient valuations at . The function field analogue, as introduced by Carlitz and Hayes, is studied as well.
@article{JTNB_2005__17_3_801_0, author = {Matthias K\"unzer and Eduard Wirsing}, title = {On coefficient valuations of {Eisenstein} polynomials}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {801--823}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {3}, year = {2005}, doi = {10.5802/jtnb.522}, mrnumber = {2212127}, zbl = {05016589}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.522/} }
TY - JOUR AU - Matthias Künzer AU - Eduard Wirsing TI - On coefficient valuations of Eisenstein polynomials JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 801 EP - 823 VL - 17 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.522/ DO - 10.5802/jtnb.522 LA - en ID - JTNB_2005__17_3_801_0 ER -
%0 Journal Article %A Matthias Künzer %A Eduard Wirsing %T On coefficient valuations of Eisenstein polynomials %J Journal de théorie des nombres de Bordeaux %D 2005 %P 801-823 %V 17 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.522/ %R 10.5802/jtnb.522 %G en %F JTNB_2005__17_3_801_0
Matthias Künzer; Eduard Wirsing. On coefficient valuations of Eisenstein polynomials. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 3, pp. 801-823. doi : 10.5802/jtnb.522. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.522/
[1] L. Carlitz, A class of polynomials. Trans. Am. Math. Soc. 43 (2) (1938), 167–182. | MR | Zbl
[2] R. Dvornicich, U. Zannier, Sums of roots of unity vanishing modulo a prime. Arch. Math. 79 (2002), 104–108. | MR | Zbl
[3] D. Goss, The arithmetic of function fields. II. The “cyclotomic” theory. J. Alg. 81 (1) (1983), 107–149. | MR | Zbl
[4] D. Goss, Basic structures of function field arithmetic. Springer, 1996. | MR | Zbl
[5] D. R. Hayes, Explicit class field theory for rational function fields. Trans. Am. Math. Soc. 189 (2) (1974), 77–91. | MR | Zbl
[6] T. Y. Lam, K. H. Leung, On Vanishing Sums of Roots of Unity. J. Alg. 224 (2000), 91–109. | MR | Zbl
[7] J. Neukirch, Algebraische Zahlentheorie. Springer, 1992. | Zbl
[8] M. Rosen, Number Theory in Function Fields. Springer GTM 210, 2000. | MR | Zbl
[9] J. P. Serre, Corps Locaux. Hermann, 1968. | MR | Zbl
[10] H. Weber, M. Künzer, Some additive galois cohomology rings. Arxiv math.NT/0102048, to appear in Comm. Alg., 2004. | MR | Zbl
Cité par Sources :