The density of ADE families of curves having squarefree discriminant
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 989-1029

We determine the density of curves having squarefree discriminant in some families of curves that arise from Vinberg representations, showing that the global density is the product of the local densities. We do so using the framework of Thorne and Laga’s PhD theses and Bhargava’s orbit -counting techniques. This paper generalises a previous result by Bhargava, Shankar and Wang.

Nous déterminons la densité des courbes à discriminant sans facteur carré dans certaines familles de courbes qui proviennent des représentations de Vinberg, en montrant que la densité globale est le produit des densités locales. Pour ce faire, nous travaillons dans le contexte des thèses de doctorat de Thorne et Laga et utilisons les techniques de comptage d’orbites de Bhargava. Cet article généralise un résultat précédent de Bhargava, Shankar et Wang.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1349
Classification : 11N35, 11G30, 17B70
Keywords: Arithmetic statistics, geometry-of-numbers, squarefree sieve, Vinberg representations, graded Lie algebras

Martí Oller 1

1 University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road,Cambridge CB3 0WB, United Kingdom
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_3_989_0,
     author = {Mart{\'\i} Oller},
     title = {The density of {ADE} families of curves having squarefree discriminant},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {989--1029},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {3},
     doi = {10.5802/jtnb.1349},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1349/}
}
TY  - JOUR
AU  - Martí Oller
TI  - The density of ADE families of curves having squarefree discriminant
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 989
EP  - 1029
VL  - 37
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1349/
DO  - 10.5802/jtnb.1349
LA  - en
ID  - JTNB_2025__37_3_989_0
ER  - 
%0 Journal Article
%A Martí Oller
%T The density of ADE families of curves having squarefree discriminant
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 989-1029
%V 37
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1349/
%R 10.5802/jtnb.1349
%G en
%F JTNB_2025__37_3_989_0
Martí Oller. The density of ADE families of curves having squarefree discriminant. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 989-1029. doi: 10.5802/jtnb.1349

[1] Jeffrey D. Adler; Jessica Fintzen; Sandeep Varma On Kostant sections and topological nilpotence, J. Lond. Math. Soc. (2), Volume 97 (2018) no. 2, pp. 325-351 | DOI | Zbl | MR

[2] Manjul Bhargava The geometric sieve and the density of squarefree values of invariant polynomials (2014) | arXiv | Zbl

[3] Manjul Bhargava Rational points on elliptic and hyperelliptic curves, Proceedings of the International Congress of Mathematicians – Seoul 2014. Vol. I: Plenary lectures and ceremonies, KM Kyung Moon Sa (2014), pp. 657-684 | Zbl | MR

[4] Manjul Bhargava; Benedict H. Gross The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point, Automorphic representations and L-functions, American Mathematical Society, 2013, pp. 23-91 | Zbl

[5] Manjul Bhargava; Wei Ho On average sizes of Selmer groups and ranks in families of elliptic curves having marked points (2022) | arXiv | Zbl

[6] Manjul Bhargava; Arul Shankar Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, Ann. Math. (2), Volume 181 (2015) no. 1, pp. 191-242 | DOI | Zbl

[7] Manjul Bhargava; Arul Shankar; Xiaoheng Wang Squarefree values of polynomial discriminants I, Invent. Math., Volume 228 (2022) no. 3, pp. 1037-1073 | DOI | MR | Zbl

[8] Manjul Bhargava; Arul Shankar; Xiaoheng Wang Squarefree values of polynomial discriminants II (2022) | arXiv

[9] Armand Borel Density and maximality of arithmetic subgroups., J. Reine Angew. Math., Volume 1966 (1966) no. 224, pp. 78-89 | DOI | Zbl | MR

[10] Armand Borel; Jean-Pierre Serre Corners and arithmetic groups, Comment. Math. Helv., Volume 48 (1973), pp. 436-491 | DOI | Zbl | MR

[11] Albert J. Coleman The Betti Numbers of the Simple Lie Groups, Can. J. Math., Volume 10 (1958), pp. 349-356 | DOI | MR | Zbl

[12] Brian Conrad Reductive group schemes, Autour des schémas en groupes. Vol. I (Panoramas et Synthèses), Volume 42/43, Société Mathématique de France, 2014, pp. 93-444 | Zbl

[13] Harold Davenport On a principle of Lipschitz, J. Lond. Math. Soc., Volume 26 (1951), pp. 179-183 | DOI | MR | Zbl

[14] Hélène Esnault Sur l’identification de singularités apparaissant dans des groupes algébriques complexes, Seminar on Singularities, Paris, 1976 / 1977 (Publications Mathématiques de l’Université Paris VII), Volume 7, 1980, pp. 31-59 | MR

[15] Alexander Grothendieck Éléments de géométrie algébrique : IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie, Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 5-361 | Zbl | MR

[16] Wei Ho How many rational points does a random curve have?, Bull. Am. Math. Soc., Volume 51 (2013) no. 1, pp. 27-52 | DOI | Zbl | MR

[17] Henryk Iwaniec; Emmanuel Kowalski Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004, xii+615 pages | DOI | MR | Zbl

[18] Jens Jantzen Representations of algebraic groups, Mathematical Surveys and Monographs, American Mathematical Society, 2007 | DOI | MR

[19] Anthony W. Knapp Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser, 1996, xvi+604 pages | MR | DOI | Zbl

[20] Jef Laga The average size of the 2-Selmer group of a family of non-hyperelliptic curves of genus 3, Algebra Number Theory, Volume 16 (2022) no. 5, pp. 1161-1212 | DOI | Zbl | MR

[21] Jef Laga Graded Lie Algebras, Compactified Jacobians and Arithmetic Statistics, J. Eur. Math. Soc. (2024) (Published online first) | DOI

[22] Serge Lang SL 2 (R), Addison-Wesley Publishing Group, 1975 | MR | Zbl

[23] Robert P. Langlands The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), American Mathematical Society, 1966, pp. 143-148 | Zbl | DOI | MR

[24] Dmitri Panyushev On invariant theory of θ-groups, J. Algebra, Volume 283 (2005), pp. 655-670 | DOI | Zbl | MR

[25] Vladimir Platonov; Andrei Rapinchuk Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139, Academic Press Inc., 1994 (Translated from the 1991 Russian original by Rachel Rowen) | MR | Zbl

[26] Bjorn Poonen Squarefree values of multivariable polynomials, Duke Math. J., Volume 118 (2003) no. 2, pp. 353-373 | DOI | Zbl | MR

[27] Roger W. Richardson Orbits, invariants, and representations associated to involutions of reductive groups, Invent. Math., Volume 66 (1982) no. 2, pp. 287-312 | DOI | Zbl | MR

[28] Beth Romano; Jack Thorne On the arithmetic of simple singularities of type E, Res. Number Theory, Volume 4 (2018) no. 2, 21, 34 pages | DOI | Zbl | MR

[29] Beth Romano; Jack Thorne E 8 and the average size of the 3-Selmer group of the Jacobian of a pointed genus-2 curve, Proc. Lond. Math. Soc. (3), Volume 122 (2021) no. 5, pp. 678-723 | DOI | MR | Zbl

[30] Ananth N. Shankar 2-Selmer groups of hyperelliptic curves with marked points, Trans. Am. Math. Soc., Volume 372 (2018) no. 1, pp. 267-304 | DOI | Zbl | MR

[31] Arul Shankar; Artane Siad; Ashvin Swaminathan; Ila Varma Geometry-of-numbers methods in the cusp (2022) | arXiv

[32] Arul Shankar; Jacob Tsimerman Counting S 5 fields with a power saving error term, Forum Math. Sigma, Volume 2 (2014), e13, 8 pages | DOI | MR

[33] Arul Shankar; Xiaoheng Wang Rational points on hyperelliptic curves having a marked non-Weierstrass point, Compos. Math., Volume 154 (2018) no. 1, pp. 188-222 | DOI | MR

[34] Peter Slodowy Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, Springer, 1980, x+175 pages | MR | DOI

[35] Robert Steinberg Torsion in reductive groups, Adv. Math., Volume 15 (1975) no. 1, pp. 63-92 https://www.sciencedirect.com/... | DOI

[36] Andrew V. Sutherland A database of nonhyperelliptic genus-3 curves over , ANTS XIII. Proceedings of the thirteenth algorithmic number theory symposium, University of Wisconsin-Madison, WI, USA, July 16–20, 2018 (The Open Book Series), Volume 2, Mathematical Sciences Publishers, 2019, pp. 443-459 | DOI | MR

[37] Jack Thorne Vinberg’s representations and arithmetic invariant theory, Algebra Number Theory, Volume 7 (2013) no. 9, pp. 2331-2368 | DOI | MR

[38] Jack Thorne E 6 and the arithmetic of a family of non-hyperelliptic curves of genus 3, Forum Math. Pi, Volume 3 (2015), e1, 41 pages | DOI | MR

[39] Jack Thorne Arithmetic invariant theory and 2-descent for plane quartic curves, Algebra Number Theory, Volume 10 (2016) no. 7, pp. 1373-1413 | DOI | MR

Cité par Sources :