We determine the density of curves having squarefree discriminant in some families of curves that arise from Vinberg representations, showing that the global density is the product of the local densities. We do so using the framework of Thorne and Laga’s PhD theses and Bhargava’s orbit -counting techniques. This paper generalises a previous result by Bhargava, Shankar and Wang.
Nous déterminons la densité des courbes à discriminant sans facteur carré dans certaines familles de courbes qui proviennent des représentations de Vinberg, en montrant que la densité globale est le produit des densités locales. Pour ce faire, nous travaillons dans le contexte des thèses de doctorat de Thorne et Laga et utilisons les techniques de comptage d’orbites de Bhargava. Cet article généralise un résultat précédent de Bhargava, Shankar et Wang.
Révisé le :
Accepté le :
Publié le :
Keywords: Arithmetic statistics, geometry-of-numbers, squarefree sieve, Vinberg representations, graded Lie algebras
Martí Oller 1
CC-BY-ND 4.0
@article{JTNB_2025__37_3_989_0,
author = {Mart{\'\i} Oller},
title = {The density of {ADE} families of curves having squarefree discriminant},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {989--1029},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {3},
doi = {10.5802/jtnb.1349},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1349/}
}
TY - JOUR AU - Martí Oller TI - The density of ADE families of curves having squarefree discriminant JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 989 EP - 1029 VL - 37 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1349/ DO - 10.5802/jtnb.1349 LA - en ID - JTNB_2025__37_3_989_0 ER -
%0 Journal Article %A Martí Oller %T The density of ADE families of curves having squarefree discriminant %J Journal de théorie des nombres de Bordeaux %D 2025 %P 989-1029 %V 37 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1349/ %R 10.5802/jtnb.1349 %G en %F JTNB_2025__37_3_989_0
Martí Oller. The density of ADE families of curves having squarefree discriminant. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 989-1029. doi: 10.5802/jtnb.1349
[1] On Kostant sections and topological nilpotence, J. Lond. Math. Soc. (2), Volume 97 (2018) no. 2, pp. 325-351 | DOI | Zbl | MR
[2] The geometric sieve and the density of squarefree values of invariant polynomials (2014) | arXiv | Zbl
[3] Rational points on elliptic and hyperelliptic curves, Proceedings of the International Congress of Mathematicians – Seoul 2014. Vol. I: Plenary lectures and ceremonies, KM Kyung Moon Sa (2014), pp. 657-684 | Zbl | MR
[4] The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point, Automorphic representations and L-functions, American Mathematical Society, 2013, pp. 23-91 | Zbl
[5] On average sizes of Selmer groups and ranks in families of elliptic curves having marked points (2022) | arXiv | Zbl
[6] Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, Ann. Math. (2), Volume 181 (2015) no. 1, pp. 191-242 | DOI | Zbl
[7] Squarefree values of polynomial discriminants I, Invent. Math., Volume 228 (2022) no. 3, pp. 1037-1073 | DOI | MR | Zbl
[8] Squarefree values of polynomial discriminants II (2022) | arXiv
[9] Density and maximality of arithmetic subgroups., J. Reine Angew. Math., Volume 1966 (1966) no. 224, pp. 78-89 | DOI | Zbl | MR
[10] Corners and arithmetic groups, Comment. Math. Helv., Volume 48 (1973), pp. 436-491 | DOI | Zbl | MR
[11] The Betti Numbers of the Simple Lie Groups, Can. J. Math., Volume 10 (1958), pp. 349-356 | DOI | MR | Zbl
[12] Reductive group schemes, Autour des schémas en groupes. Vol. I (Panoramas et Synthèses), Volume 42/43, Société Mathématique de France, 2014, pp. 93-444 | Zbl
[13] On a principle of Lipschitz, J. Lond. Math. Soc., Volume 26 (1951), pp. 179-183 | DOI | MR | Zbl
[14] Sur l’identification de singularités apparaissant dans des groupes algébriques complexes, Seminar on Singularities, Paris, 1976 / 1977 (Publications Mathématiques de l’Université Paris VII), Volume 7, 1980, pp. 31-59 | MR
[15] Éléments de géométrie algébrique : IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie, Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 5-361 | Zbl | MR
[16] How many rational points does a random curve have?, Bull. Am. Math. Soc., Volume 51 (2013) no. 1, pp. 27-52 | DOI | Zbl | MR
[17] Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004, xii+615 pages | DOI | MR | Zbl
[18] Representations of algebraic groups, Mathematical Surveys and Monographs, American Mathematical Society, 2007 | DOI | MR
[19] Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser, 1996, xvi+604 pages | MR | DOI | Zbl
[20] The average size of the 2-Selmer group of a family of non-hyperelliptic curves of genus 3, Algebra Number Theory, Volume 16 (2022) no. 5, pp. 1161-1212 | DOI | Zbl | MR
[21] Graded Lie Algebras, Compactified Jacobians and Arithmetic Statistics, J. Eur. Math. Soc. (2024) (Published online first) | DOI
[22] , Addison-Wesley Publishing Group, 1975 | MR | Zbl
[23] The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), American Mathematical Society, 1966, pp. 143-148 | Zbl | DOI | MR
[24] On invariant theory of -groups, J. Algebra, Volume 283 (2005), pp. 655-670 | DOI | Zbl | MR
[25] Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139, Academic Press Inc., 1994 (Translated from the 1991 Russian original by Rachel Rowen) | MR | Zbl
[26] Squarefree values of multivariable polynomials, Duke Math. J., Volume 118 (2003) no. 2, pp. 353-373 | DOI | Zbl | MR
[27] Orbits, invariants, and representations associated to involutions of reductive groups, Invent. Math., Volume 66 (1982) no. 2, pp. 287-312 | DOI | Zbl | MR
[28] On the arithmetic of simple singularities of type E, Res. Number Theory, Volume 4 (2018) no. 2, 21, 34 pages | DOI | Zbl | MR
[29] and the average size of the 3-Selmer group of the Jacobian of a pointed genus-2 curve, Proc. Lond. Math. Soc. (3), Volume 122 (2021) no. 5, pp. 678-723 | DOI | MR | Zbl
[30] -Selmer groups of hyperelliptic curves with marked points, Trans. Am. Math. Soc., Volume 372 (2018) no. 1, pp. 267-304 | DOI | Zbl | MR
[31] Geometry-of-numbers methods in the cusp (2022) | arXiv
[32] Counting fields with a power saving error term, Forum Math. Sigma, Volume 2 (2014), e13, 8 pages | DOI | MR
[33] Rational points on hyperelliptic curves having a marked non-Weierstrass point, Compos. Math., Volume 154 (2018) no. 1, pp. 188-222 | DOI | MR
[34] Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, Springer, 1980, x+175 pages | MR | DOI
[35] Torsion in reductive groups, Adv. Math., Volume 15 (1975) no. 1, pp. 63-92 https://www.sciencedirect.com/... | DOI
[36] A database of nonhyperelliptic genus-3 curves over , ANTS XIII. Proceedings of the thirteenth algorithmic number theory symposium, University of Wisconsin-Madison, WI, USA, July 16–20, 2018 (The Open Book Series), Volume 2, Mathematical Sciences Publishers, 2019, pp. 443-459 | DOI | MR
[37] Vinberg’s representations and arithmetic invariant theory, Algebra Number Theory, Volume 7 (2013) no. 9, pp. 2331-2368 | DOI | MR
[38] and the arithmetic of a family of non-hyperelliptic curves of genus 3, Forum Math. Pi, Volume 3 (2015), e1, 41 pages | DOI | MR
[39] Arithmetic invariant theory and 2-descent for plane quartic curves, Algebra Number Theory, Volume 10 (2016) no. 7, pp. 1373-1413 | DOI | MR
Cité par Sources :