Size of discriminants of periodic geodesics on the modular surface
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 795-835

Pick a random matrix $\gamma $ in $\Gamma =\mathrm{SL}(2,\mathbb{Z})$. Denote by $\mathcal{O}_\mathbb{K}$ the Dedekind ring generated by its eigenvalues, and let $\Delta _\mathbb{K}$, $\Delta _\gamma $ and $\Delta =\mathrm{Tr}(\gamma )^2-4$ be the respective discriminant of the rings $\mathcal{O}_\mathbb{K}$, the multiplier ring $M(2,\mathbb{Z})\cap \mathbb{Q}[\gamma ]$ and $\mathbb{Z}[\gamma ]$. We show that their ratios admit probability limit distributions when ordered by Frobenius norm. In particular, 42% of the elements of $\Gamma $ have a fundamental discriminant, and $\mathbb{Z}[\gamma ]$ is a ring of integers with probability 32%.

Considérons une matrice aléatoire $\gamma $ de $\Gamma =\mathrm{SL}(2,\mathbb{Z})$. Notons par $\mathcal{O}_\mathbb{K}$ l’anneau de Dedekind engendré par ses valeurs propres, et soient $\Delta _\mathbb{K}$, $\Delta _\gamma $ et $\Delta =\mathrm{Tr}(\gamma )^2-4$ les discriminants respectifs des anneaux $\mathcal{O}_\mathbb{K}$, de l’anneau des multiplicateurs $M(2,\mathbb{Z})\cap \mathbb{Q}[\gamma ]$ et $\mathbb{Z}[\gamma ]$. Nous démontrons que les rapports entre ces discriminants convergent en loi vers une loi de probabilité lorsque les matrices de $\Gamma $ sont ordonnés selon leur norme de Frobenius. En particulier, 42% des éléments de $\Gamma $ ont un discriminant qui est fondamental, et $\mathbb{Z}[\gamma ]$ est un anneau d’entier avec probabilité 32%.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1343
Classification : 37A44, 11K65
Keywords: discriminant, random matrix

François Maucourant 1

1 Université Rennes, IRMAR UMR 6625, Campus de Beaulieu, 35042 Rennes cedex, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_3_795_0,
     author = {Fran\c{c}ois Maucourant},
     title = {Size of discriminants of periodic geodesics on the modular surface},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {795--835},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {3},
     doi = {10.5802/jtnb.1343},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1343/}
}
TY  - JOUR
AU  - François Maucourant
TI  - Size of discriminants of periodic geodesics on the modular surface
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 795
EP  - 835
VL  - 37
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1343/
DO  - 10.5802/jtnb.1343
LA  - en
ID  - JTNB_2025__37_3_795_0
ER  - 
%0 Journal Article
%A François Maucourant
%T Size of discriminants of periodic geodesics on the modular surface
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 795-835
%V 37
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1343/
%R 10.5802/jtnb.1343
%G en
%F JTNB_2025__37_3_795_0
François Maucourant. Size of discriminants of periodic geodesics on the modular surface. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 795-835. doi: 10.5802/jtnb.1343

[1] Manjul Bhargava; Arul Shankar; Xiaoheng Wang Squarefree values of polynomial discriminants I, Invent. Math., Volume 228 (2022) no. 3, pp. 1037-1073 | DOI | Zbl | MR

[2] Manjul Bhargava; Arul Shankar; Xiaoheng Wang Squarefree values of polynomial discriminants II (2022) | arXiv

[3] Jean Bourgain; Alex Kontorovich Beyond expansion II: low-lying fundamental geodesics, J. Eur. Math. Soc., Volume 19 (2017) no. 5, pp. 1331-1359 | DOI | MR | Zbl

[4] Keith Conrad The conductor ideal (https://kconrad.math.uconn.edu/blurbs/gradnumthy/conductor.pdf)

[5] Manfred Einsiedler; Elon Lindenstrauss; Philippe Michel; Akshay Venkatesh The distribution of closed geodesics on the modular surface, and Duke’s theorem, Enseign. Math. (2), Volume 58 (2012) no. 3–4, pp. 249-313 | DOI | MR | Zbl

[6] Godfrey H. Hardy; Edward M. Wright An introduction to the theory of numbers, Clarendon Press, 1979, xvi+426 pages | MR | Zbl

[7] Yasufumi Hashimoto Asymptotic formulas for class number sums of indefinite binary quadratic forms on arithmetic progressions, Int. J. Number Theory, Volume 9 (2013) no. 1, pp. 27-51 | DOI | MR | Zbl

[8] Wenzhi Luo; Zeév Rudnick; Peter Sarnak The variance of arithmetic measures associated to closed geodesics on the modular surface, J. Mod. Dyn., Volume 3 (2009) no. 2, pp. 271-309 | DOI | MR | Zbl

[9] George E. Martin The foundations of geometry and the non-Euclidean plane., Undergraduate Texts in Mathematics, Springer, 1998 | Zbl | MR

[10] François Maucourant Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices, Duke Math. J., Volume 136 (2007) no. 2, pp. 357-399 | DOI | MR | Zbl

[11] Curtis McMullen Ergodic Theory, Geometry and Dynamics, 2020 (https://people.math.harvard.edu/~ctm/papers/home/text/class/notes/ergodic/course.pdf)

[12] Toshitsune Miyake Modular forms. Transl. from the Japanese by Joshitaku Maeda, Springer Monographs in Mathematics, Springer, 2006 | DOI | Zbl

[13] Charles J. Mozzochi Linking numbers of modular geodesics, Isr. J. Math., Volume 195 (2013), pp. 71-95 | Zbl | MR | DOI

[14] Jürgen Neukirch; Norbert Schappacher Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer, 2013 | MR

[15] Amos Nevo; Peter Sarnak Prime and almost prime integral points on principal homogeneous spaces, Acta Math., Volume 205 (2010) no. 2, pp. 361-402 | DOI | Zbl | MR

[16] Mark Pollicott Distribution of closed geodesics on the modular surface and quadratic irrationals, Bull. Soc. Math. Fr., Volume 114 (1986), pp. 431-446 | DOI | Zbl | Numdam | MR

[17] Nicole Raulf Asymptotics of class numbers for progressions and for fundamental discriminants, Forum Math., Volume 21 (2009) no. 2, pp. 221-257 | DOI | MR | Zbl

[18] Nicole Raulf Limit distribution of class numbers for discriminants in progressions and fundamental discriminants, Int. J. Number Theory, Volume 12 (2016) no. 5, pp. 1237-1258 | DOI | MR | Zbl

[19] Igor Rivin How to pick a random integer matrix? (and other questions), Math. Comput., Volume 85 (2016) no. 298, pp. 783-797 | DOI | MR | Zbl

[20] Thomas Roblin Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr., Nouv. Sér., Volume 95 (2003), pp. 1-96 | Zbl | Numdam | MR

[21] Christian Roettger Counting invertible matrices and uniform distribution, J. Théor. Nombres Bordeaux, Volume 17 (2005) no. 1, pp. 301-322 | DOI | MR | Zbl | Numdam

[22] Peter Sarnak Class numbers of indefinite binary quadratic forms, J. Number Theory, Volume 15 (1982) no. 2, pp. 229-247 | DOI | MR | Zbl

[23] Peter Sarnak Class numbers of indefinite binary quadratic forms. II, J. Number Theory, Volume 21 (1985), pp. 333-346 | DOI | Zbl

Cité par Sources :