Pick a random matrix $\gamma $ in $\Gamma =\mathrm{SL}(2,\mathbb{Z})$. Denote by $\mathcal{O}_\mathbb{K}$ the Dedekind ring generated by its eigenvalues, and let $\Delta _\mathbb{K}$, $\Delta _\gamma $ and $\Delta =\mathrm{Tr}(\gamma )^2-4$ be the respective discriminant of the rings $\mathcal{O}_\mathbb{K}$, the multiplier ring $M(2,\mathbb{Z})\cap \mathbb{Q}[\gamma ]$ and $\mathbb{Z}[\gamma ]$. We show that their ratios admit probability limit distributions when ordered by Frobenius norm. In particular, 42% of the elements of $\Gamma $ have a fundamental discriminant, and $\mathbb{Z}[\gamma ]$ is a ring of integers with probability 32%.
Considérons une matrice aléatoire $\gamma $ de $\Gamma =\mathrm{SL}(2,\mathbb{Z})$. Notons par $\mathcal{O}_\mathbb{K}$ l’anneau de Dedekind engendré par ses valeurs propres, et soient $\Delta _\mathbb{K}$, $\Delta _\gamma $ et $\Delta =\mathrm{Tr}(\gamma )^2-4$ les discriminants respectifs des anneaux $\mathcal{O}_\mathbb{K}$, de l’anneau des multiplicateurs $M(2,\mathbb{Z})\cap \mathbb{Q}[\gamma ]$ et $\mathbb{Z}[\gamma ]$. Nous démontrons que les rapports entre ces discriminants convergent en loi vers une loi de probabilité lorsque les matrices de $\Gamma $ sont ordonnés selon leur norme de Frobenius. En particulier, 42% des éléments de $\Gamma $ ont un discriminant qui est fondamental, et $\mathbb{Z}[\gamma ]$ est un anneau d’entier avec probabilité 32%.
Révisé le :
Accepté le :
Publié le :
Keywords: discriminant, random matrix
François Maucourant 1
CC-BY-ND 4.0
@article{JTNB_2025__37_3_795_0,
author = {Fran\c{c}ois Maucourant},
title = {Size of discriminants of periodic geodesics on the modular surface},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {795--835},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {3},
doi = {10.5802/jtnb.1343},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1343/}
}
TY - JOUR AU - François Maucourant TI - Size of discriminants of periodic geodesics on the modular surface JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 795 EP - 835 VL - 37 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1343/ DO - 10.5802/jtnb.1343 LA - en ID - JTNB_2025__37_3_795_0 ER -
%0 Journal Article %A François Maucourant %T Size of discriminants of periodic geodesics on the modular surface %J Journal de théorie des nombres de Bordeaux %D 2025 %P 795-835 %V 37 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1343/ %R 10.5802/jtnb.1343 %G en %F JTNB_2025__37_3_795_0
François Maucourant. Size of discriminants of periodic geodesics on the modular surface. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 795-835. doi: 10.5802/jtnb.1343
[1] Squarefree values of polynomial discriminants I, Invent. Math., Volume 228 (2022) no. 3, pp. 1037-1073 | DOI | Zbl | MR
[2] Squarefree values of polynomial discriminants II (2022) | arXiv
[3] Beyond expansion II: low-lying fundamental geodesics, J. Eur. Math. Soc., Volume 19 (2017) no. 5, pp. 1331-1359 | DOI | MR | Zbl
[4] The conductor ideal (https://kconrad.math.uconn.edu/blurbs/gradnumthy/conductor.pdf)
[5] The distribution of closed geodesics on the modular surface, and Duke’s theorem, Enseign. Math. (2), Volume 58 (2012) no. 3–4, pp. 249-313 | DOI | MR | Zbl
[6] An introduction to the theory of numbers, Clarendon Press, 1979, xvi+426 pages | MR | Zbl
[7] Asymptotic formulas for class number sums of indefinite binary quadratic forms on arithmetic progressions, Int. J. Number Theory, Volume 9 (2013) no. 1, pp. 27-51 | DOI | MR | Zbl
[8] The variance of arithmetic measures associated to closed geodesics on the modular surface, J. Mod. Dyn., Volume 3 (2009) no. 2, pp. 271-309 | DOI | MR | Zbl
[9] The foundations of geometry and the non-Euclidean plane., Undergraduate Texts in Mathematics, Springer, 1998 | Zbl | MR
[10] Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices, Duke Math. J., Volume 136 (2007) no. 2, pp. 357-399 | DOI | MR | Zbl
[11] Ergodic Theory, Geometry and Dynamics, 2020 (https://people.math.harvard.edu/~ctm/papers/home/text/class/notes/ergodic/course.pdf)
[12] Modular forms. Transl. from the Japanese by Joshitaku Maeda, Springer Monographs in Mathematics, Springer, 2006 | DOI | Zbl
[13] Linking numbers of modular geodesics, Isr. J. Math., Volume 195 (2013), pp. 71-95 | Zbl | MR | DOI
[14] Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer, 2013 | MR
[15] Prime and almost prime integral points on principal homogeneous spaces, Acta Math., Volume 205 (2010) no. 2, pp. 361-402 | DOI | Zbl | MR
[16] Distribution of closed geodesics on the modular surface and quadratic irrationals, Bull. Soc. Math. Fr., Volume 114 (1986), pp. 431-446 | DOI | Zbl | Numdam | MR
[17] Asymptotics of class numbers for progressions and for fundamental discriminants, Forum Math., Volume 21 (2009) no. 2, pp. 221-257 | DOI | MR | Zbl
[18] Limit distribution of class numbers for discriminants in progressions and fundamental discriminants, Int. J. Number Theory, Volume 12 (2016) no. 5, pp. 1237-1258 | DOI | MR | Zbl
[19] How to pick a random integer matrix? (and other questions), Math. Comput., Volume 85 (2016) no. 298, pp. 783-797 | DOI | MR | Zbl
[20] Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr., Nouv. Sér., Volume 95 (2003), pp. 1-96 | Zbl | Numdam | MR
[21] Counting invertible matrices and uniform distribution, J. Théor. Nombres Bordeaux, Volume 17 (2005) no. 1, pp. 301-322 | DOI | MR | Zbl | Numdam
[22] Class numbers of indefinite binary quadratic forms, J. Number Theory, Volume 15 (1982) no. 2, pp. 229-247 | DOI | MR | Zbl
[23] Class numbers of indefinite binary quadratic forms. II, J. Number Theory, Volume 21 (1985), pp. 333-346 | DOI | Zbl
Cité par Sources :