Let $C/\mathbb{Q}$ be a genus $2$ curve whose Jacobian $J/\mathbb{Q}$ has real multiplication by a quadratic order in which $7$ splits. We describe an algorithm which outputs twists of the Klein quartic curve which parametrise elliptic curves whose mod $7$ Galois representations are isomorphic to a sub-representation of the mod $7$ Galois representation attached to $J/\mathbb{Q}$. Applying this algorithm to genus $2$ curves of small conductor in families of Bending and Elkies–Kumar we exhibit a number of genus $2$ Jacobians whose Tate–Shafarevich groups (unconditionally) contain a non-trivial element of order $7$ which is visible in an abelian three-fold.
Soit $C/\mathbb{Q}$ une courbe de genre $2$ dont la jacobienne $J/\mathbb{Q}$ a une multiplication réelle par un ordre quadratique dans lequel $7$ se décompose. Nous décrivons un algorithme qui produit une tordue galoisienne de la quartique de Klein qui paramètrise les courbes elliptiques dont la représentation galoisienne modulo 7 est isomorphe à une sous-représentation de la représentation galoisienne modulo $7$ associée à $J/\mathbb{Q}$. En appliquant cet algorithme aux courbes de genre $2$ de petit conducteur dans les familles de Bending et Elkies–Kumar nous donnons des exemples de courbes de genre $2$ dont les groupes de Tate–Shafarevich contiennent (inconditionellement) un élément non trivial d’ordre $7$ visible dans une variété abélienne de dimension $3$.
Révisé le :
Accepté le :
Publié le :
Keywords: Tate–Shafarevich group, Visibility, Modular curves, Galois representations
Sam Frengley 1
CC-BY-ND 4.0
@article{JTNB_2025__37_2_727_0,
author = {Sam Frengley},
title = {Explicit $7$-torsion in the {Tate{\textendash}Shafarevich} groups of genus $2$ {Jacobians}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {727--746},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1340},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1340/}
}
TY - JOUR AU - Sam Frengley TI - Explicit $7$-torsion in the Tate–Shafarevich groups of genus $2$ Jacobians JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 727 EP - 746 VL - 37 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1340/ DO - 10.5802/jtnb.1340 LA - en ID - JTNB_2025__37_2_727_0 ER -
%0 Journal Article %A Sam Frengley %T Explicit $7$-torsion in the Tate–Shafarevich groups of genus $2$ Jacobians %J Journal de théorie des nombres de Bordeaux %D 2025 %P 727-746 %V 37 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1340/ %R 10.5802/jtnb.1340 %G en %F JTNB_2025__37_2_727_0
Sam Frengley. Explicit $7$-torsion in the Tate–Shafarevich groups of genus $2$ Jacobians. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 727-746. doi: 10.5802/jtnb.1340
[1] Visibility of Shafarevich–Tate groups of abelian varieties, J. Number Theory, Volume 97 (2002) no. 1, pp. 171-185 | Zbl | DOI | MR
[2] Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comput., Volume 74 (2005) no. 249, pp. 455-484 (with an appendix by J. Cremona and B. Mazur) | DOI | MR | Zbl
[3] Curves of genus with -multiplication, Ph. D. Thesis, University of Oxford (1998)
[4] Curves of genus 2 with sqrt2 multiplication (1999) | arXiv
[5] Elements of given order in Tate–Shafarevich groups of abelian varieties in quadratic twist families, Algebra Number Theory, Volume 15 (2021) no. 3, pp. 627-655 | Zbl | DOI | MR
[6] Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[7] Descent via -isogeny on Jacobians of genus 2 curves, Acta Arith., Volume 165 (2014) no. 3, pp. 201-223 | DOI | MR | Zbl
[8] Prolegomena to a middlebrow arithmetic of curves of genus , London Mathematical Society Lecture Note Series, 230, Cambridge University Press, 1996, xiv+219 pages | Zbl | DOI | MR
[9] Generic models for genus 2 curves with real multiplication (2024) | arXiv | Zbl
[10] Visualizing elements in the Shafarevich–Tate group, Exp. Math., Volume 9 (2000) no. 1, pp. 13-28 | DOI | Zbl | MR
[11] On the projective invariants of quartic plane curves, Adv. Math., Volume 64 (1987) no. 3, pp. 279-304 | MR | Zbl | DOI
[12] 3-torsion and conductor of genus 2 curves, Math. Comput., Volume 88 (2019) no. 318, pp. 1913-1927 | DOI | Zbl | MR
[13] The Klein quartic in number theory, The eightfold way (Mathematical Sciences Research Institute Publications), Volume 35, Cambridge University Press, 1999, pp. 51-101 | DOI | Zbl | MR
[14] K3 surfaces and equations for Hilbert modular surfaces, Algebra Number Theory, Volume 8 (2014) no. 10, pp. 2297-2411 | Zbl | DOI | MR
[15] Explicit computations of invariants of plane quartic curves, J. Symb. Comput., Volume 68 (2015), pp. 109-115 | Zbl | DOI | MR
[16] Minimization of hypersurfaces, Math. Comput., Volume 93 (2024) no. 349, pp. 2513-2555 | Zbl | DOI | MR
[17] On families of 7- and 11-congruent elliptic curves, LMS J. Comput. Math., Volume 17 (2014) no. 1, pp. 536-564 | Zbl | DOI | MR
[18] Visualizing elements of order 7 in the Tate–Shafarevich group of an elliptic curve, LMS J. Comput. Math., Volume 19 (2016) no. suppl. A, pp. 100-114 | Zbl | DOI | MR
[19] Descent via -isogeny on Jacobians of genus 2 curves, J. Number Theory, Volume 153 (2015), pp. 270-282 | MR | Zbl | DOI
[20] Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comput., Volume 70 (2001) no. 236, pp. 1675-1697 | DOI | Zbl | MR
[21] Arbitrarily large -torsion in Tate–Shafarevich groups, J. Inst. Math. Jussieu, Volume 24 (2025) no. 2, pp. 481-502 | DOI | MR | Zbl
[22] On the symplectic type of isomorphisms of the -torsion of elliptic curves, Memoirs of the American Mathematical Society, 1361, AMS, 2022, v+105 pages | Zbl | DOI | MR
[23] GitHub repository, https://github.com/SamFrengley/sha-7-examples.git
[24] Explicit moduli spaces for curves of genus 1 and 2, Ph. D. Thesis, University of Cambridge (2023) https://www.repository.cam.ac.uk/... | DOI
[25] On -congruences of elliptic curves, Int. J. Number Theory, Volume 20 (2024) no. 2, pp. 565-601 | Zbl | DOI | MR
[26] Complete verification of strong BSD for many modular abelian surfaces over , Forum Math. Sigma, Volume 13 (2025), e20, 82 pages | MR | Zbl
[27] Serre’s modularity conjecture. I, Invent. Math., Volume 178 (2009) no. 3, pp. 485-504 | Zbl | DOI | MR
[28] Serre’s modularity conjecture. II, Invent. Math., Volume 178 (2009) no. 3, pp. 505-586 | Zbl | DOI | MR
[29] Ueber die Transformation siebenter Ordnung der elliptischen Functionen, Math. Ann., Volume 14 (1878) no. 3, pp. 428-471 | Zbl | DOI | MR
[30] The L-functions and Modular Forms Database, 2025 (http://www.lmfdb.org [accessed 20 January 2025])
[31] Curves of genus with good reduction away from with a rational Weierstrass point, Math. Proc. Camb. Philos. Soc., Volume 114 (1993) no. 2, pp. 203-214 | Zbl | DOI | MR
[32] GitHub repository, https://github.com/cgnicholls/phd-code.git [accessed November 2023]
[33] Descent methods and torsion on Jacobians of higher genus curves, Ph. D. Thesis, University of Oxford (2018) https://ora.ox.ac.uk/...
[34] The graded ring of invariants of ternary quartics I (preprint, https://aeb.win.tue.nl/math/ohno-preprint.2007.05.15.pdf)
[35] Twists of and primitive solutions to , Duke Math. J., Volume 137 (2007) no. 1, pp. 103-158 | Zbl | DOI | MR
[36] SageMath, the Sage Mathematics Software System (Version 9.5) (2022) (https://www.sagemath.org)
[37] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972) no. 4, pp. 259-331 | Zbl | DOI | MR
[38] Local fields, Springer, 1979, viii+241 pages (translated from the French by Marvin Jay Greenberg.) | Zbl | DOI | MR
[39] Good reduction of abelian varieties, Ann. Math. (2), Volume 88 (1968), pp. 492-517 | Zbl | DOI | MR
[40] Elements of prime order in Tate–Shafarevich groups of abelian varieties over , Forum Math. Sigma, Volume 10 (2022), e98, 10 pages | Zbl | DOI | MR
[41] Two simple -dimensional abelian varieties defined over with Mordell–Weil group of rank at least , C. R. Math., Volume 321 (1995) no. 10, pp. 1341-1345 | Zbl | MR
[42] Explicit open images for elliptic curves over (2022) | arXiv | Zbl
Cité par Sources :