Explicit $7$-torsion in the Tate–Shafarevich groups of genus $2$ Jacobians
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 727-746

Let $C/\mathbb{Q}$ be a genus $2$ curve whose Jacobian $J/\mathbb{Q}$ has real multiplication by a quadratic order in which $7$ splits. We describe an algorithm which outputs twists of the Klein quartic curve which parametrise elliptic curves whose mod $7$ Galois representations are isomorphic to a sub-representation of the mod $7$ Galois representation attached to $J/\mathbb{Q}$. Applying this algorithm to genus $2$ curves of small conductor in families of Bending and Elkies–Kumar we exhibit a number of genus $2$ Jacobians whose Tate–Shafarevich groups (unconditionally) contain a non-trivial element of order $7$ which is visible in an abelian three-fold.

Soit $C/\mathbb{Q}$ une courbe de genre $2$ dont la jacobienne $J/\mathbb{Q}$ a une multiplication réelle par un ordre quadratique dans lequel $7$ se décompose. Nous décrivons un algorithme qui produit une tordue galoisienne de la quartique de Klein qui paramètrise les courbes elliptiques dont la représentation galoisienne modulo 7 est isomorphe à une sous-représentation de la représentation galoisienne modulo $7$ associée à $J/\mathbb{Q}$. En appliquant cet algorithme aux courbes de genre $2$ de petit conducteur dans les familles de Bending et Elkies–Kumar nous donnons des exemples de courbes de genre $2$ dont les groupes de Tate–Shafarevich contiennent (inconditionellement) un élément non trivial d’ordre $7$ visible dans une variété abélienne de dimension $3$.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1340
Classification : 11G30, 11G10, 14H40
Keywords: Tate–Shafarevich group, Visibility, Modular curves, Galois representations

Sam Frengley 1

1 School of Mathematics, University of Bristol, Bristol, BS8 1UG, United Kingdom
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_2_727_0,
     author = {Sam Frengley},
     title = {Explicit $7$-torsion in the {Tate{\textendash}Shafarevich} groups of genus $2$ {Jacobians}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {727--746},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {2},
     doi = {10.5802/jtnb.1340},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1340/}
}
TY  - JOUR
AU  - Sam Frengley
TI  - Explicit $7$-torsion in the Tate–Shafarevich groups of genus $2$ Jacobians
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 727
EP  - 746
VL  - 37
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1340/
DO  - 10.5802/jtnb.1340
LA  - en
ID  - JTNB_2025__37_2_727_0
ER  - 
%0 Journal Article
%A Sam Frengley
%T Explicit $7$-torsion in the Tate–Shafarevich groups of genus $2$ Jacobians
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 727-746
%V 37
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1340/
%R 10.5802/jtnb.1340
%G en
%F JTNB_2025__37_2_727_0
Sam Frengley. Explicit $7$-torsion in the Tate–Shafarevich groups of genus $2$ Jacobians. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 727-746. doi: 10.5802/jtnb.1340

[1] Amod Agashe; William Stein Visibility of Shafarevich–Tate groups of abelian varieties, J. Number Theory, Volume 97 (2002) no. 1, pp. 171-185 | Zbl | DOI | MR

[2] Amod Agashe; William Stein Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comput., Volume 74 (2005) no. 249, pp. 455-484 (with an appendix by J. Cremona and B. Mazur) | DOI | MR | Zbl

[3] Peter R. Bending Curves of genus 2 with 2-multiplication, Ph. D. Thesis, University of Oxford (1998)

[4] Peter R. Bending Curves of genus 2 with sqrt2 multiplication (1999) | arXiv

[5] Manjul Bhargava; Zev Klagsbrun; Robert J. Lemke Oliver; Ari Shnidman Elements of given order in Tate–Shafarevich groups of abelian varieties in quadratic twist families, Algebra Number Theory, Volume 15 (2021) no. 3, pp. 627-655 | Zbl | DOI | MR

[6] Wieb Bosma; John Cannon; Catherine Playoust Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl

[7] Nils Bruin; E. Victor Flynn; Damiano Testa Descent via (3,3)-isogeny on Jacobians of genus 2 curves, Acta Arith., Volume 165 (2014) no. 3, pp. 201-223 | DOI | MR | Zbl

[8] John W. S. Cassels; E. Victor Flynn Prolegomena to a middlebrow arithmetic of curves of genus 2, London Mathematical Society Lecture Note Series, 230, Cambridge University Press, 1996, xiv+219 pages | Zbl | DOI | MR

[9] Alex Cowan; Sam Frengley; Kimball Martin Generic models for genus 2 curves with real multiplication (2024) | arXiv | Zbl

[10] John E. Cremona; Barry Mazur Visualizing elements in the Shafarevich–Tate group, Exp. Math., Volume 9 (2000) no. 1, pp. 13-28 | DOI | Zbl | MR

[11] Jacques Dixmier On the projective invariants of quartic plane curves, Adv. Math., Volume 64 (1987) no. 3, pp. 279-304 | MR | Zbl | DOI

[12] Tim Dokchitser; Christopher Doris 3-torsion and conductor of genus 2 curves, Math. Comput., Volume 88 (2019) no. 318, pp. 1913-1927 | DOI | Zbl | MR

[13] Noam D. Elkies The Klein quartic in number theory, The eightfold way (Mathematical Sciences Research Institute Publications), Volume 35, Cambridge University Press, 1999, pp. 51-101 | DOI | Zbl | MR

[14] Noam D. Elkies; Abhinav Kumar K3 surfaces and equations for Hilbert modular surfaces, Algebra Number Theory, Volume 8 (2014) no. 10, pp. 2297-2411 | Zbl | DOI | MR

[15] Andreas-Stephan Elsenhans Explicit computations of invariants of plane quartic curves, J. Symb. Comput., Volume 68 (2015), pp. 109-115 | Zbl | DOI | MR

[16] Andreas-Stephan Elsenhans; Michael Stoll Minimization of hypersurfaces, Math. Comput., Volume 93 (2024) no. 349, pp. 2513-2555 | Zbl | DOI | MR

[17] Tom A. Fisher On families of 7- and 11-congruent elliptic curves, LMS J. Comput. Math., Volume 17 (2014) no. 1, pp. 536-564 | Zbl | DOI | MR

[18] Tom A. Fisher Visualizing elements of order 7 in the Tate–Shafarevich group of an elliptic curve, LMS J. Comput. Math., Volume 19 (2016) no. suppl. A, pp. 100-114 | Zbl | DOI | MR

[19] E. Victor Flynn Descent via (5,5)-isogeny on Jacobians of genus 2 curves, J. Number Theory, Volume 153 (2015), pp. 270-282 | MR | Zbl | DOI

[20] E. Victor Flynn; Franck Leprévost; Edward F. Schaefer; William Stein; Michael Stoll Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comput., Volume 70 (2001) no. 236, pp. 1675-1697 | DOI | Zbl | MR

[21] E. Victor Flynn; Ari Shnidman Arbitrarily large p-torsion in Tate–Shafarevich groups, J. Inst. Math. Jussieu, Volume 24 (2025) no. 2, pp. 481-502 | DOI | MR | Zbl

[22] Nuno Freitas; Alain Kraus On the symplectic type of isomorphisms of the p-torsion of elliptic curves, Memoirs of the American Mathematical Society, 1361, AMS, 2022, v+105 pages | Zbl | DOI | MR

[23] Sam Frengley GitHub repository, https://github.com/SamFrengley/sha-7-examples.git

[24] Sam Frengley Explicit moduli spaces for curves of genus 1 and 2, Ph. D. Thesis, University of Cambridge (2023) https://www.repository.cam.ac.uk/... | DOI

[25] Sam Frengley On 12-congruences of elliptic curves, Int. J. Number Theory, Volume 20 (2024) no. 2, pp. 565-601 | Zbl | DOI | MR

[26] Timo Keller; Michael Stoll Complete verification of strong BSD for many modular abelian surfaces over Q, Forum Math. Sigma, Volume 13 (2025), e20, 82 pages | MR | Zbl

[27] Chandrashekhar Khare; Jean-Pierre Wintenberger Serre’s modularity conjecture. I, Invent. Math., Volume 178 (2009) no. 3, pp. 485-504 | Zbl | DOI | MR

[28] Chandrashekhar Khare; Jean-Pierre Wintenberger Serre’s modularity conjecture. II, Invent. Math., Volume 178 (2009) no. 3, pp. 505-586 | Zbl | DOI | MR

[29] Felix Klein Ueber die Transformation siebenter Ordnung der elliptischen Functionen, Math. Ann., Volume 14 (1878) no. 3, pp. 428-471 | Zbl | DOI | MR

[30] The LMFDB Collaboration The L-functions and Modular Forms Database, 2025 (http://www.lmfdb.org [accessed 20 January 2025])

[31] J. R. Merriman; Nigel P. Smart Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point, Math. Proc. Camb. Philos. Soc., Volume 114 (1993) no. 2, pp. 203-214 | Zbl | DOI | MR

[32] Chris Nicholls GitHub repository, https://github.com/cgnicholls/phd-code.git [accessed November 2023]

[33] Chris Nicholls Descent methods and torsion on Jacobians of higher genus curves, Ph. D. Thesis, University of Oxford (2018) https://ora.ox.ac.uk/...

[34] Toshiaki Ohno The graded ring of invariants of ternary quartics I (preprint, https://aeb.win.tue.nl/math/ohno-preprint.2007.05.15.pdf)

[35] Bjorn Poonen; Edward F. Schaefer; Michael Stoll Twists of X(7) and primitive solutions to x 2 +y 3 =z 7 , Duke Math. J., Volume 137 (2007) no. 1, pp. 103-158 | Zbl | DOI | MR

[36] The Sage Developers SageMath, the Sage Mathematics Software System (Version 9.5) (2022) (https://www.sagemath.org)

[37] Jean-Pierre Serre Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972) no. 4, pp. 259-331 | Zbl | DOI | MR

[38] Jean-Pierre Serre Local fields, Springer, 1979, viii+241 pages (translated from the French by Marvin Jay Greenberg.) | Zbl | DOI | MR

[39] Jean-Pierre Serre; John Tate Good reduction of abelian varieties, Ann. Math. (2), Volume 88 (1968), pp. 492-517 | Zbl | DOI | MR

[40] Ari Shnidman; Ariel Weiss Elements of prime order in Tate–Shafarevich groups of abelian varieties over , Forum Math. Sigma, Volume 10 (2022), e98, 10 pages | Zbl | DOI | MR

[41] Michael Stoll Two simple 2-dimensional abelian varieties defined over with Mordell–Weil group of rank at least 19, C. R. Math., Volume 321 (1995) no. 10, pp. 1341-1345 | Zbl | MR

[42] David Zywina Explicit open images for elliptic curves over (2022) | arXiv | Zbl

Cité par Sources :