Minimal Subgroups of $\mathrm{GL}_2(\mathbb{Z}_{S})$
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 579-597

Let $E$ be an elliptic curve over a number field $L$ and for a finite set $S$ of primes, let $\rho _{E,S} : \mathrm{Gal}(\bar{L}/L) \rightarrow \mathrm{GL}_{2}(\mathbb{Z}_{S})$ be the $S$-adic Galois representation. If $L \cap \mathbb{Q}(\zeta _{n}) = \mathbb{Q}$ for all positive integers $n$ whose prime factors are in $S$, then $\det \rho _{E,S} : \mathrm{Gal}(\bar{L}/L) \rightarrow \mathbb{Z}_{S}^{\times }$ is surjective. We say that a finite index subgroup $H \subseteq \mathrm{GL}_{2}(\mathbb{Z}_{S})$ is minimal if $\det : H \rightarrow \mathbb{Z}_{S}^{\times }$ is surjective, but $\det : K \rightarrow \mathbb{Z}_{S}^{\times }$ is not surjective for any proper closed subgroup $K$ of $H$. We show that there are no minimal subgroups of $\mathrm{GL}_{2}(\mathbb{Z}_{S})$ unless $S = \lbrace 2 \rbrace $, while minimal subgroups of $\mathrm{GL}_{2}(\mathbb{Z}_{2})$ are plentiful. We give models for all the genus $0$ modular curves associated to minimal subgroups of $\mathrm{GL}_{2}(\mathbb{Z}_{2})$, and construct an infinite family of elliptic curves over imaginary quadratic fields with bad reduction only at $2$ and with minimal $2$-adic image.

Soient $L$ un corps de nombres, $E$ une courbe elliptique sur $L$, $S$ un ensemble de nombres premiers, et $\rho _{E,S} : \mathrm{Gal}(\bar{L}/L) \rightarrow \mathrm{GL}_{2}(\mathbb{Z}_{S})$ la représentation galoisienne $S$-adique. Si $L \cap \mathbb{Q}(\zeta _{n}) = \mathbb{Q}$ pour chaque entier $n$ dont tous les facteurs premiers sont dans $S$, alors $\det \rho _{E,S} : \mathrm{Gal}(\bar{L}/L) \rightarrow \mathrm{GL}_{2}(\mathbb{Z}_{S})$ est surjectif. Disons qu’un sous-groupe $H$ de $\mathrm{GL}_{2}(\mathbb{Z}_{S})$ d’indice fini est minimal si $\det : H \rightarrow \mathbb{Z}_{S}^{\times }$ est surjectif, mais $\det : K \rightarrow \mathbb{Z}_{S}^{\times }$ n’est pas surjectif pour chaque sous-groupe $K$ de $H$ propre et fermé. Nous montrons que $\mathrm{GL}_{2}(\mathbb{Z}_{S})$ n’admet un sous-groupe minimal que si $S = \lbrace 2 \rbrace $, et que dans $\mathrm{GL}_{2}(\mathbb{Z}_{2})$ il y en a plein. Nous donnons un modèle pour toute courbe modulaire de genre $0$ associée à un sous-groupe minimal, et construisons une famille infinie de courbes elliptiques sur des corps quadratiques imaginaires ayant mauvaise réduction seulement en $2$ et une image $2$-adique minimale.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1333
Classification : 11G05, 11F80, 14H52, 22E50
Keywords: Elliptic Curves, Galois Representations, Profinite Groups

Harris B. Daniels 1 ; Jeremy Rouse 2

1 Department of Mathematics and Statistics, Amherst College, Amherst, MA 01002, USA
2 Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_2_579_0,
     author = {Harris B. Daniels and Jeremy Rouse},
     title = {Minimal {Subgroups} of $\mathrm{GL}_2(\mathbb{Z}_{S})$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {579--597},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {2},
     doi = {10.5802/jtnb.1333},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1333/}
}
TY  - JOUR
AU  - Harris B. Daniels
AU  - Jeremy Rouse
TI  - Minimal Subgroups of $\mathrm{GL}_2(\mathbb{Z}_{S})$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 579
EP  - 597
VL  - 37
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1333/
DO  - 10.5802/jtnb.1333
LA  - en
ID  - JTNB_2025__37_2_579_0
ER  - 
%0 Journal Article
%A Harris B. Daniels
%A Jeremy Rouse
%T Minimal Subgroups of $\mathrm{GL}_2(\mathbb{Z}_{S})$
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 579-597
%V 37
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1333/
%R 10.5802/jtnb.1333
%G en
%F JTNB_2025__37_2_579_0
Harris B. Daniels; Jeremy Rouse. Minimal Subgroups of $\mathrm{GL}_2(\mathbb{Z}_{S})$. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 579-597. doi: 10.5802/jtnb.1333

[1] Wieb Bosma; John Cannon; Catherine Playoust The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl

[2] Chris J. Cummins; Sebastian Pauli Data associate to Congruence subgroups of PSL (2,) of genus less than or equal to 24, https://mathstats.uncg.edu/sites/pauli/congruence/ (accessed 2024-01-01)

[3] Chris J. Cummins; Sebastian Pauli Congruence subgroups of PSL (2,) of genus less than or equal to 24, Exp. Math., Volume 12 (2003) no. 2, pp. 243-255 | MR | DOI | Zbl

[4] Harris B. Daniels; Enrique González-Jiménez Serre’s constant of elliptic curves over the rationals, Exp. Math., Volume 31 (2022) no. 2, pp. 518-536 | DOI | MR | Zbl

[5] Harris B. Daniels; Álvaro Lozano-Robledo; Jackson S. Morrow Towards a classification of entanglements of Galois representations attached to elliptic curves, Rev. Mat. Iberoam., Volume 39 (2023) no. 3, pp. 803-844 | DOI | MR | Zbl

[6] Harris B. Daniels; Jackson S. Morrow A group theoretic perspective on entanglements of division fields, Trans. Amer. Math. Soc., Ser. B, Volume 9 (2022), pp. 827-858 | Zbl | DOI | MR

[7] Harris B. Daniels; Jeremy Rouse Code for Minimal Subgroups of GL 2 ( S ), https://github.com/HDaniels432/Minimal-Groups, 2024 (accessed 2024-03-06)

[8] John D. Dixon; Marcus P. F. du Sautoy; Aavinoam Mann; Dan Segal Analytic pro-p groups, Cambridge Studies in Advanced Mathematics, 61, Cambridge University Press, 1999, xviii+368 pages | Zbl | DOI | MR

[9] David S. Dummit; Richard M. Foote Abstract algebra, John Wiley & Sons, 2004, xii+932 pages | Zbl | MR

[10] The LMFDB Collaboration The L-functions and modular forms database, https://www.lmfdb.org, 2023 (accessed 2023-08-02)

[11] Álvaro Lozano-Robledo Elliptic curves, modular forms, and their L-functions, Student Mathematical Library, 58, American Mathematical Society, 2011, xiv+195 pages | DOI | MR | Zbl

[12] James S. Milne Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer, 1986, pp. 103-150 | DOI | Zbl | MR

[13] Nikolay Nikolov; Dan Segal Finite index subgroups in profinite groups, C. R. Math., Volume 337 (2003) no. 5, pp. 303-308 | Numdam | Zbl | DOI | MR

[14] Rakvi A classification of genus 0 modular curves with rational points, Math. Comput., Volume 93 (2024) no. 348, pp. 1859-1902 | Zbl | DOI

[15] Alain M. Robert A course in p-adic analysis, Graduate Texts in Mathematics, 198, Springer, 2000, xvi+437 pages | DOI | MR | Zbl

[16] Jeremy Rouse; Andrew V. Sutherland; David Zureick-Brown -adic images of Galois for elliptic curves over (and an appendix with John Voight), Forum Math. Sigma, Volume 10 (2022), e62, 63 pages (with an appendix with John Voight) | DOI | MR

[17] Jeremy Rouse; David Zureick-Brown Elliptic curves over and 2-adic images of Galois, Res. Number Theory, Volume 1 (2015), 12, 34 pages | Zbl | DOI | MR

[18] Jean-Pierre Serre Abelian l-adic representations and elliptic curves, W. A. Benjamin, Inc., 1968, xvi+177 pages (McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute) | Numdam | Zbl | MR

[19] Jean-Pierre Serre; John Tate Good reduction of abelian varieties, Ann. Math. (2), Volume 88 (1968), pp. 492-517 | Zbl | DOI | MR

[20] Joseph H. Silverman Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiv+525 pages | Zbl | DOI | MR

[21] Joseph H. Silverman The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009, xx+513 pages | Zbl | DOI | MR

[22] John Tate The non-existence of certain Galois extensions of Q unramified outside 2, Arithmetic geometry (Tempe, AZ, 1993) (Contemporary Mathematics), Volume 174, American Mathematical Society, 1994, pp. 153-156 | Zbl | DOI | MR

[23] David Zywina On the possible images of the mod ell representations associated to elliptic curves over (2015) | arXiv

[24] David Zywina Explicit open images for elliptic curves over (2022) | arXiv | Zbl

Cité par Sources :