Let $E$ be an elliptic curve over a number field $L$ and for a finite set $S$ of primes, let $\rho _{E,S} : \mathrm{Gal}(\bar{L}/L) \rightarrow \mathrm{GL}_{2}(\mathbb{Z}_{S})$ be the $S$-adic Galois representation. If $L \cap \mathbb{Q}(\zeta _{n}) = \mathbb{Q}$ for all positive integers $n$ whose prime factors are in $S$, then $\det \rho _{E,S} : \mathrm{Gal}(\bar{L}/L) \rightarrow \mathbb{Z}_{S}^{\times }$ is surjective. We say that a finite index subgroup $H \subseteq \mathrm{GL}_{2}(\mathbb{Z}_{S})$ is minimal if $\det : H \rightarrow \mathbb{Z}_{S}^{\times }$ is surjective, but $\det : K \rightarrow \mathbb{Z}_{S}^{\times }$ is not surjective for any proper closed subgroup $K$ of $H$. We show that there are no minimal subgroups of $\mathrm{GL}_{2}(\mathbb{Z}_{S})$ unless $S = \lbrace 2 \rbrace $, while minimal subgroups of $\mathrm{GL}_{2}(\mathbb{Z}_{2})$ are plentiful. We give models for all the genus $0$ modular curves associated to minimal subgroups of $\mathrm{GL}_{2}(\mathbb{Z}_{2})$, and construct an infinite family of elliptic curves over imaginary quadratic fields with bad reduction only at $2$ and with minimal $2$-adic image.
Soient $L$ un corps de nombres, $E$ une courbe elliptique sur $L$, $S$ un ensemble de nombres premiers, et $\rho _{E,S} : \mathrm{Gal}(\bar{L}/L) \rightarrow \mathrm{GL}_{2}(\mathbb{Z}_{S})$ la représentation galoisienne $S$-adique. Si $L \cap \mathbb{Q}(\zeta _{n}) = \mathbb{Q}$ pour chaque entier $n$ dont tous les facteurs premiers sont dans $S$, alors $\det \rho _{E,S} : \mathrm{Gal}(\bar{L}/L) \rightarrow \mathrm{GL}_{2}(\mathbb{Z}_{S})$ est surjectif. Disons qu’un sous-groupe $H$ de $\mathrm{GL}_{2}(\mathbb{Z}_{S})$ d’indice fini est minimal si $\det : H \rightarrow \mathbb{Z}_{S}^{\times }$ est surjectif, mais $\det : K \rightarrow \mathbb{Z}_{S}^{\times }$ n’est pas surjectif pour chaque sous-groupe $K$ de $H$ propre et fermé. Nous montrons que $\mathrm{GL}_{2}(\mathbb{Z}_{S})$ n’admet un sous-groupe minimal que si $S = \lbrace 2 \rbrace $, et que dans $\mathrm{GL}_{2}(\mathbb{Z}_{2})$ il y en a plein. Nous donnons un modèle pour toute courbe modulaire de genre $0$ associée à un sous-groupe minimal, et construisons une famille infinie de courbes elliptiques sur des corps quadratiques imaginaires ayant mauvaise réduction seulement en $2$ et une image $2$-adique minimale.
Révisé le :
Accepté le :
Publié le :
Keywords: Elliptic Curves, Galois Representations, Profinite Groups
Harris B. Daniels 1 ; Jeremy Rouse 2
CC-BY-ND 4.0
@article{JTNB_2025__37_2_579_0,
author = {Harris B. Daniels and Jeremy Rouse},
title = {Minimal {Subgroups} of $\mathrm{GL}_2(\mathbb{Z}_{S})$},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {579--597},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1333},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1333/}
}
TY - JOUR
AU - Harris B. Daniels
AU - Jeremy Rouse
TI - Minimal Subgroups of $\mathrm{GL}_2(\mathbb{Z}_{S})$
JO - Journal de théorie des nombres de Bordeaux
PY - 2025
SP - 579
EP - 597
VL - 37
IS - 2
PB - Société Arithmétique de Bordeaux
UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1333/
DO - 10.5802/jtnb.1333
LA - en
ID - JTNB_2025__37_2_579_0
ER -
%0 Journal Article
%A Harris B. Daniels
%A Jeremy Rouse
%T Minimal Subgroups of $\mathrm{GL}_2(\mathbb{Z}_{S})$
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 579-597
%V 37
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1333/
%R 10.5802/jtnb.1333
%G en
%F JTNB_2025__37_2_579_0
Harris B. Daniels; Jeremy Rouse. Minimal Subgroups of $\mathrm{GL}_2(\mathbb{Z}_{S})$. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 579-597. doi: 10.5802/jtnb.1333
[1] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[2] Data associate to Congruence subgroups of of genus less than or equal to 24, https://mathstats.uncg.edu/sites/pauli/congruence/ (accessed 2024-01-01)
[3] Congruence subgroups of of genus less than or equal to 24, Exp. Math., Volume 12 (2003) no. 2, pp. 243-255 | MR | DOI | Zbl
[4] Serre’s constant of elliptic curves over the rationals, Exp. Math., Volume 31 (2022) no. 2, pp. 518-536 | DOI | MR | Zbl
[5] Towards a classification of entanglements of Galois representations attached to elliptic curves, Rev. Mat. Iberoam., Volume 39 (2023) no. 3, pp. 803-844 | DOI | MR | Zbl
[6] A group theoretic perspective on entanglements of division fields, Trans. Amer. Math. Soc., Ser. B, Volume 9 (2022), pp. 827-858 | Zbl | DOI | MR
[7] Code for Minimal Subgroups of GL, https://github.com/HDaniels432/Minimal-Groups, 2024 (accessed 2024-03-06)
[8] Analytic pro- groups, Cambridge Studies in Advanced Mathematics, 61, Cambridge University Press, 1999, xviii+368 pages | Zbl | DOI | MR
[9] Abstract algebra, John Wiley & Sons, 2004, xii+932 pages | Zbl | MR
[10] The L-functions and modular forms database, https://www.lmfdb.org, 2023 (accessed 2023-08-02)
[11] Elliptic curves, modular forms, and their -functions, Student Mathematical Library, 58, American Mathematical Society, 2011, xiv+195 pages | DOI | MR | Zbl
[12] Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer, 1986, pp. 103-150 | DOI | Zbl | MR
[13] Finite index subgroups in profinite groups, C. R. Math., Volume 337 (2003) no. 5, pp. 303-308 | Numdam | Zbl | DOI | MR
[14] A classification of genus 0 modular curves with rational points, Math. Comput., Volume 93 (2024) no. 348, pp. 1859-1902 | Zbl | DOI
[15] A course in -adic analysis, Graduate Texts in Mathematics, 198, Springer, 2000, xvi+437 pages | DOI | MR | Zbl
[16] -adic images of Galois for elliptic curves over (and an appendix with John Voight), Forum Math. Sigma, Volume 10 (2022), e62, 63 pages (with an appendix with John Voight) | DOI | MR
[17] Elliptic curves over and 2-adic images of Galois, Res. Number Theory, Volume 1 (2015), 12, 34 pages | Zbl | DOI | MR
[18] Abelian -adic representations and elliptic curves, W. A. Benjamin, Inc., 1968, xvi+177 pages (McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute) | Numdam | Zbl | MR
[19] Good reduction of abelian varieties, Ann. Math. (2), Volume 88 (1968), pp. 492-517 | Zbl | DOI | MR
[20] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiv+525 pages | Zbl | DOI | MR
[21] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009, xx+513 pages | Zbl | DOI | MR
[22] The non-existence of certain Galois extensions of unramified outside , Arithmetic geometry (Tempe, AZ, 1993) (Contemporary Mathematics), Volume 174, American Mathematical Society, 1994, pp. 153-156 | Zbl | DOI | MR
[23] On the possible images of the mod ell representations associated to elliptic curves over (2015) | arXiv
[24] Explicit open images for elliptic curves over (2022) | arXiv | Zbl
Cité par Sources :