Since simple commutative finite flat group schemes $G$ over $\mathbf{Z}$ are killed by a prime number $p$, their order is a power of $p$. Tate asked whether a simple group scheme $G$ is necessarily equal to $\mathbf{Z}/p\mathbf{Z}$ or $\mu _p$. This has been proved for primes $p\le 19$. Under assumption of the Generalized Riemann Hypothesis we extend this result to primes $p\le 37$.
Comme un schéma en groupe commutatif, fini, plat et simple sur $\mathbf{Z}$ est tué par un nombre premier $p$, son ordre est une puissance de $p$. Tate a posé la question de savoir si un schéma en groupes fini, plat et simple $G$ sur $\mathbf{Z}$ est nécessairement isomorphe à $\mathbf{Z}/p\mathbf{Z}$ ou $\mu _p$. La réponse à cette question est affirmative pour $p \le 19$. Sous l’hypothèse de Riemann généralisée, nous étendons ce résultat aux nombres premiers $p \le 37$.
Accepté le :
Publié le :
Keywords: Finite group scheme
Lassina Dembélé 1 ; René Schoof 2
CC-BY-ND 4.0
@article{JTNB_2025__37_2_569_0,
author = {Lassina Demb\'el\'e and Ren\'e Schoof},
title = {GRH and finite flat group schemes over $\mathbf{Z}$},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {569--578},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1332},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1332/}
}
TY - JOUR
AU - Lassina Dembélé
AU - René Schoof
TI - GRH and finite flat group schemes over $\mathbf{Z}$
JO - Journal de théorie des nombres de Bordeaux
PY - 2025
SP - 569
EP - 578
VL - 37
IS - 2
PB - Société Arithmétique de Bordeaux
UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1332/
DO - 10.5802/jtnb.1332
LA - en
ID - JTNB_2025__37_2_569_0
ER -
%0 Journal Article
%A Lassina Dembélé
%A René Schoof
%T GRH and finite flat group schemes over $\mathbf{Z}$
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 569-578
%V 37
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1332/
%R 10.5802/jtnb.1332
%G en
%F JTNB_2025__37_2_569_0
Lassina Dembélé; René Schoof. GRH and finite flat group schemes over $\mathbf{Z}$. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 569-578. doi: 10.5802/jtnb.1332
[1] Galois moduli of period group schemes over a ring of Witt vectors, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 51 (1987) no. 4, pp. 691-736 | Zbl | MR
[2] Finite flat group schemes over killed by , J. Number Theory, Volume 260 (2024), pp. 191-195 | DOI | MR | Zbl
[3] Il n’y a pas de variété abélienne sur , Invent. Math., Volume 81 (1985) no. 3, pp. 515-538 | DOI | MR | Zbl
[4] Serre’s modularity conjecture: The level one case, Duke Math. J., Volume 134 (2006) no. 3, pp. 557-589 | MR | Zbl
[5] Discriminant bounds (1976) (https://www-users.cse.umn.edu/~odlyzko/unpublished/index.html)
[6] PARI/GP version 2.9.0, 2016 (available from https://pari.math.u-bordeaux.fr/)
[7] Schémas en groupes de type , Bull. Soc. Math. Fr., Volume 102 (1974), pp. 241-280 | DOI | MR | Numdam | Zbl
[8] Abelian varieties over real quadratic fields with good reduction everywhere (in preparation)
[9] Infinite class field towers of quadratic fields, J. Reine Angew. Math., Volume 372 (1986), pp. 209-220 | MR | Zbl
[10] Minus class groups of cyclotomic fields of prime conductor, Math. Comput., Volume 67 (1998), pp. 1225-1245 | DOI | Zbl
[11] Semistable abelian varieties with good reduction outside , Manuscr. Math., Volume 139 (2012), pp. 49-70 | MR | DOI | Zbl
[12] Linear representations of finite groups, Graduate Studies in Mathematics, 42, Springer, 1977, x+170 pages (translated from the French by Leonard L. Scott) | DOI | MR | Zbl
[13] -divisible groups, Proc. Conf. Local Fields, NUFFIC Summer School Driebergen 1966, Springer (1967), pp. 158-183 | MR | Zbl
[14] Group schemes of prime order, Ann. Sci. Éc. Norm. Supér. (4), Volume 3 (1970), pp. 1-21 | DOI | MR | Numdam | Zbl
Cité par Sources :