Division in Modules and Kummer Theory
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 389-441

In this work we generalize the concept of injective module and develop a theory of divisibility for modules over a general ring, which provides a general and unified framework to study Kummer-like field extensions arising from commutative algebraic groups. With these tools we provide an effective bound for the degree of the field extensions arising from division points of elliptic curves, extending previous results of Javan Peykar for CM curves and of Lombardo and the author for the non-CM case.

Dans ce travail, nous généralisons la notion de module injectif et développons une théorie de divisibilité pour les modules sur un anneau quelconque, ce qui fournit un cadre général et unifié pour l’étude des extensions de corps commutatifs de type Kummer provenant des groupes algébriques commutatifs. Avec ces outils, nous fournissons une borne effective pour le degré des extensions de corps commutatifs engendrées par des points de division des courbes elliptiques, en étendant les résultats précédents de Javan Peykar pour les courbes CM et de Lombardo et l’auteur pour le cas non-CM.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1326
Classification : 13C11, 16D10, 16D90, 11F80, 11G05, 11G10
Keywords: Kummer theory, elliptic curves, abelian varieties, modules, injective modules, injectivity, Galois representations, open-image theorem
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_2_389_0,
     author = {Sebastiano Tronto},
     title = {Division in {Modules} and {Kummer} {Theory}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {389--441},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {2},
     doi = {10.5802/jtnb.1326},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1326/}
}
TY  - JOUR
AU  - Sebastiano Tronto
TI  - Division in Modules and Kummer Theory
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 389
EP  - 441
VL  - 37
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1326/
DO  - 10.5802/jtnb.1326
LA  - en
ID  - JTNB_2025__37_2_389_0
ER  - 
%0 Journal Article
%A Sebastiano Tronto
%T Division in Modules and Kummer Theory
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 389-441
%V 37
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1326/
%R 10.5802/jtnb.1326
%G en
%F JTNB_2025__37_2_389_0
Sebastiano Tronto. Division in Modules and Kummer Theory. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 389-441. doi: 10.5802/jtnb.1326

[1] Frank Anderson; Kent Fuller Rings and Categories of Modules, Graduate Texts in Mathematics, 13, Springer, 2012

[2] Reinhold Baer Abelian groups that are direct summands of every containing abelian group, Bull. Am. Math. Soc., Volume 46 (1940) no. 10, pp. 800-806 | DOI | Zbl

[3] Charles W. Curtis; Irving Reiner Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, 11, John Wiley & Sons, 1962, xiv+685 pages | MR | Zbl

[4] Beno Eckmann; Andreas Schopf Über injektive Moduln, Arch. Math., Volume 4 (1953) no. 2, pp. 75-78 | DOI | Zbl

[5] Isidore Fleischer A new construction of the injective hull, Can. Math. Bull., Volume 11 (1968), pp. 19-21 | Zbl | DOI | MR

[6] Aurélien Galateau; César Martínez Homothéties explicites des représentations -adiques, J. Théor. Nombres Bordeaux, Volume 35 (2023) no. 2, pp. 567-590 | DOI | MR | Zbl

[7] Marc Hindry Autour d’une conjecture de Serge Lang, Invent. Math., Volume 94 (1988) no. 3, pp. 575-603 | DOI | MR | Zbl

[8] A. Javan Peykar Division points in arithmetic, Ph. D. Thesis, Leiden University (2021) (https://hdl.handle.net/1887/138941)

[9] Jr Lenstra Complex multiplication structure of elliptic curves, J. Number Theory, Volume 56 (1996) no. 2, pp. 227-241 | DOI | MR | Zbl

[10] Davide Lombardo Galois representations attached to abelian varieties of CM type, Bull. Soc. Math. Fr., Volume 145 (2017) no. 3, pp. 469-501 | DOI | MR | Numdam | Zbl

[11] Davide Lombardo; Sebastiano Tronto Effective Kummer Theory for Elliptic Curves, Int. Math. Res. Not., Volume 2022 (2022) no. 22, pp. 17662-17712 | DOI | MR | Zbl

[12] W. J. Palenstijn Galois action on division points (Master’s thesis, Leiden University, 2004, https://hdl.handle.net/1887/3597578)

[13] W. J. Palenstijn Radicals in arithmetic, Ph. D. Thesis, Leiden University (2014) (https://hdl.handle.net/1887/25833)

[14] Flavio Perissinotto Kummer theory for abelian varieties (2024) (https://hdl.handle.net/10993/61819)

[15] Antonella Perucca; Pietro Sgobba Kummer theory for number fields and the reductions of algebraic numbers, Int. J. Number Theory, Volume 15 (2019) no. 8, pp. 1617-1633 | DOI | MR | Zbl

[16] Antonella Perucca; Pietro Sgobba; Sebastiano Tronto Explicit Kummer theory for the rational numbers, Int. J. Number Theory, Volume 16 (2020) no. 10, pp. 2213-2231 | DOI | MR | Zbl

[17] Antonella Perucca; Pietro Sgobba; Sebastiano Tronto The degree of Kummer extensions of number fields, Int. J. Number Theory, Volume 17 (2021) no. 5, pp. 1091-1110 | DOI | MR | Zbl

[18] Irving Reiner Maximal orders, London Mathematical Society Monographs, 5, Academic Press Inc., 1975, xii+395 pages | MR | Zbl

[19] Gaël Rémond; Eric Gaudron Nouveaux théorèmes d’isogénies (2020) (preprint)

[20] Kenneth A. Ribet Kummer theory on extensions of abelian varieties by tori, Duke Math. J., Volume 46 (1979), pp. 745-761 | MR | Zbl

[21] Jean-Pierre Serre Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331 | Zbl | DOI | MR

[22] Sebastiano Tronto Radical entanglement for elliptic curves (2020) (submitted for publication) | arXiv | Zbl

Cité par Sources :