In this work we generalize the concept of injective module and develop a theory of divisibility for modules over a general ring, which provides a general and unified framework to study Kummer-like field extensions arising from commutative algebraic groups. With these tools we provide an effective bound for the degree of the field extensions arising from division points of elliptic curves, extending previous results of Javan Peykar for CM curves and of Lombardo and the author for the non-CM case.
Dans ce travail, nous généralisons la notion de module injectif et développons une théorie de divisibilité pour les modules sur un anneau quelconque, ce qui fournit un cadre général et unifié pour l’étude des extensions de corps commutatifs de type Kummer provenant des groupes algébriques commutatifs. Avec ces outils, nous fournissons une borne effective pour le degré des extensions de corps commutatifs engendrées par des points de division des courbes elliptiques, en étendant les résultats précédents de Javan Peykar pour les courbes CM et de Lombardo et l’auteur pour le cas non-CM.
Révisé le :
Accepté le :
Publié le :
Keywords: Kummer theory, elliptic curves, abelian varieties, modules, injective modules, injectivity, Galois representations, open-image theorem
CC-BY-ND 4.0
@article{JTNB_2025__37_2_389_0,
author = {Sebastiano Tronto},
title = {Division in {Modules} and {Kummer} {Theory}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {389--441},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1326},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1326/}
}
TY - JOUR AU - Sebastiano Tronto TI - Division in Modules and Kummer Theory JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 389 EP - 441 VL - 37 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1326/ DO - 10.5802/jtnb.1326 LA - en ID - JTNB_2025__37_2_389_0 ER -
%0 Journal Article %A Sebastiano Tronto %T Division in Modules and Kummer Theory %J Journal de théorie des nombres de Bordeaux %D 2025 %P 389-441 %V 37 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1326/ %R 10.5802/jtnb.1326 %G en %F JTNB_2025__37_2_389_0
Sebastiano Tronto. Division in Modules and Kummer Theory. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 389-441. doi: 10.5802/jtnb.1326
[1] Rings and Categories of Modules, Graduate Texts in Mathematics, 13, Springer, 2012
[2] Abelian groups that are direct summands of every containing abelian group, Bull. Am. Math. Soc., Volume 46 (1940) no. 10, pp. 800-806 | DOI | Zbl
[3] Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, 11, John Wiley & Sons, 1962, xiv+685 pages | MR | Zbl
[4] Über injektive Moduln, Arch. Math., Volume 4 (1953) no. 2, pp. 75-78 | DOI | Zbl
[5] A new construction of the injective hull, Can. Math. Bull., Volume 11 (1968), pp. 19-21 | Zbl | DOI | MR
[6] Homothéties explicites des représentations -adiques, J. Théor. Nombres Bordeaux, Volume 35 (2023) no. 2, pp. 567-590 | DOI | MR | Zbl
[7] Autour d’une conjecture de Serge Lang, Invent. Math., Volume 94 (1988) no. 3, pp. 575-603 | DOI | MR | Zbl
[8] Division points in arithmetic, Ph. D. Thesis, Leiden University (2021) (https://hdl.handle.net/1887/138941)
[9] Complex multiplication structure of elliptic curves, J. Number Theory, Volume 56 (1996) no. 2, pp. 227-241 | DOI | MR | Zbl
[10] Galois representations attached to abelian varieties of CM type, Bull. Soc. Math. Fr., Volume 145 (2017) no. 3, pp. 469-501 | DOI | MR | Numdam | Zbl
[11] Effective Kummer Theory for Elliptic Curves, Int. Math. Res. Not., Volume 2022 (2022) no. 22, pp. 17662-17712 | DOI | MR | Zbl
[12] Galois action on division points (Master’s thesis, Leiden University, 2004, https://hdl.handle.net/1887/3597578)
[13] Radicals in arithmetic, Ph. D. Thesis, Leiden University (2014) (https://hdl.handle.net/1887/25833)
[14] Kummer theory for abelian varieties (2024) (https://hdl.handle.net/10993/61819)
[15] Kummer theory for number fields and the reductions of algebraic numbers, Int. J. Number Theory, Volume 15 (2019) no. 8, pp. 1617-1633 | DOI | MR | Zbl
[16] Explicit Kummer theory for the rational numbers, Int. J. Number Theory, Volume 16 (2020) no. 10, pp. 2213-2231 | DOI | MR | Zbl
[17] The degree of Kummer extensions of number fields, Int. J. Number Theory, Volume 17 (2021) no. 5, pp. 1091-1110 | DOI | MR | Zbl
[18] Maximal orders, London Mathematical Society Monographs, 5, Academic Press Inc., 1975, xii+395 pages | MR | Zbl
[19] Nouveaux théorèmes d’isogénies (2020) (preprint)
[20] Kummer theory on extensions of abelian varieties by tori, Duke Math. J., Volume 46 (1979), pp. 745-761 | MR | Zbl
[21] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331 | Zbl | DOI | MR
[22] Radical entanglement for elliptic curves (2020) (submitted for publication) | arXiv | Zbl
Cité par Sources :