A Dedekind–Rademacher cocycle for Bianchi groups
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 285-298

We construct a generalization of the Dedekind–Rademacher cocycle to congruence subgroups of $\mathrm{SL}_2(\mathbb{C})$, and derive some of its basic properties. In particular, we show that it parametrizes a family of $L$-values and prove the integrality of these values.

Nous construisons un cocycle de Dedekind et Rademacher généralisé pour les sous-groupes de congruence de $\mathrm{SL}_2(\mathbb{C})$ et déduisons certaines de ses propriétés de base. En particulier, nous montrons qu’il paramétrise une famille de valeurs d’une certaine fonction $L$ et prouvons l’intégralité de ces valeurs.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1321
Classification : 11F20, 11F37
Keywords: Elliptic Dedekind sum, Bianchi modular forms, Dedekind–Rademacher cocycle

Kim Klinger-Logan 1 ; Kalani Thalagoda 2 ; Tian An Wong 3

1 Kansas State University 1228 N Martin Luther King Jr Dr, 138 Cardwell Hall Manhattan, KS 66506, USA
2 Tulane University 6823 St. Charles Avenue New Orleans, LA 70118, USA
3 University of Michigan-Dearborn 4901 Evergreen Rd, 2002 CASL Building Dearborn, MI 48128, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_1_285_0,
     author = {Kim Klinger-Logan and Kalani Thalagoda and Tian An Wong},
     title = {A {Dedekind{\textendash}Rademacher} cocycle for {Bianchi} groups},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {285--298},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {1},
     doi = {10.5802/jtnb.1321},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1321/}
}
TY  - JOUR
AU  - Kim Klinger-Logan
AU  - Kalani Thalagoda
AU  - Tian An Wong
TI  - A Dedekind–Rademacher cocycle for Bianchi groups
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 285
EP  - 298
VL  - 37
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1321/
DO  - 10.5802/jtnb.1321
LA  - en
ID  - JTNB_2025__37_1_285_0
ER  - 
%0 Journal Article
%A Kim Klinger-Logan
%A Kalani Thalagoda
%A Tian An Wong
%T A Dedekind–Rademacher cocycle for Bianchi groups
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 285-298
%V 37
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1321/
%R 10.5802/jtnb.1321
%G en
%F JTNB_2025__37_1_285_0
Kim Klinger-Logan; Kalani Thalagoda; Tian An Wong. A Dedekind–Rademacher cocycle for Bianchi groups. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 285-298. doi: 10.5802/jtnb.1321

[1] Nicolas Bergeron; Pierre Charollois; Luis E. García Eisenstein cohomology classes for GL N over imaginary quadratic fields, J. Reine Angew. Math., Volume 797 (2023), pp. 1-40 | Zbl | MR

[2] Henri Darmon; Alice Pozzi; Jan Vonk The values of the Dedekind–Rademacher cocycle at real multiplication points, J. Eur. Math. Soc., Volume 26 (2023) no. 10, pp. 3987-4032 | DOI | MR | Zbl

[3] Jorge Flórez; Cihan Karabulut; Tian An Wong Eisenstein cocycles over imaginary quadratic fields and special values of L-functions, J. Number Theory, Volume 204 (2019), pp. 497-531 | Zbl | DOI | MR

[4] Takako Fukaya; Kazuya Kato; Romyar Sharifi Modular symbols in Iwasawa theory, Iwasawa theory 2012 (Contributions in Mathematical and Computational Sciences), Volume 7, Springer, 2014, pp. 177-219 | MR | DOI | Zbl

[5] Hiroshi Ito A function on the upper half space which is analogous to the imaginary part of logη(z), J. Reine Angew. Math., Volume 373 (1987), pp. 148-165 | DOI | MR | Zbl

[6] Barry Mazur On the arithmetic of special values of L functions, Invent. Math., Volume 55 (1979) no. 3, pp. 207-240 | DOI | MR | Zbl

[7] Hans Rademacher; Emil Grosswald Dedekind sums, The Carus Mathematical Monographs, 16, Mathematical Association of America, 1972, xvi+102 pages | MR | DOI | Zbl

[8] Walter Roelcke Über den Laplace-Operator auf Riemannschen Mannigfaltigkeiten mit diskontinuierlichen Gruppen, Math. Nachr., Volume 21 (1960) no. 3-5, pp. 131-149 | DOI | MR | Zbl

[9] Robert Sczech Dedekindsummen mit elliptischen Funktionen, Invent. Math., Volume 76 (1984) no. 3, pp. 523-551 | DOI | MR | Zbl

[10] Romyar Sharifi; Akshay Venkatesh Eisenstein cocycles in motivic cohomology (2024), pp. 2407-2479

[11] Uwe Weselmann Eisensteinkohomologie und Dedekindsummen für GL 2 über imaginär-quadratischen Zahlkörpern, J. Reine Angew. Math., Volume 389 (1988), pp. 90-121 | DOI | MR | Zbl

Cité par Sources :