We construct a generalization of the Dedekind–Rademacher cocycle to congruence subgroups of $\mathrm{SL}_2(\mathbb{C})$, and derive some of its basic properties. In particular, we show that it parametrizes a family of $L$-values and prove the integrality of these values.
Nous construisons un cocycle de Dedekind et Rademacher généralisé pour les sous-groupes de congruence de $\mathrm{SL}_2(\mathbb{C})$ et déduisons certaines de ses propriétés de base. En particulier, nous montrons qu’il paramétrise une famille de valeurs d’une certaine fonction $L$ et prouvons l’intégralité de ces valeurs.
Révisé le :
Accepté le :
Publié le :
Keywords: Elliptic Dedekind sum, Bianchi modular forms, Dedekind–Rademacher cocycle
Kim Klinger-Logan 1 ; Kalani Thalagoda 2 ; Tian An Wong 3
CC-BY-ND 4.0
@article{JTNB_2025__37_1_285_0,
author = {Kim Klinger-Logan and Kalani Thalagoda and Tian An Wong},
title = {A {Dedekind{\textendash}Rademacher} cocycle for {Bianchi} groups},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {285--298},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {1},
doi = {10.5802/jtnb.1321},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1321/}
}
TY - JOUR AU - Kim Klinger-Logan AU - Kalani Thalagoda AU - Tian An Wong TI - A Dedekind–Rademacher cocycle for Bianchi groups JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 285 EP - 298 VL - 37 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1321/ DO - 10.5802/jtnb.1321 LA - en ID - JTNB_2025__37_1_285_0 ER -
%0 Journal Article %A Kim Klinger-Logan %A Kalani Thalagoda %A Tian An Wong %T A Dedekind–Rademacher cocycle for Bianchi groups %J Journal de théorie des nombres de Bordeaux %D 2025 %P 285-298 %V 37 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1321/ %R 10.5802/jtnb.1321 %G en %F JTNB_2025__37_1_285_0
Kim Klinger-Logan; Kalani Thalagoda; Tian An Wong. A Dedekind–Rademacher cocycle for Bianchi groups. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 285-298. doi: 10.5802/jtnb.1321
[1] Eisenstein cohomology classes for over imaginary quadratic fields, J. Reine Angew. Math., Volume 797 (2023), pp. 1-40 | Zbl | MR
[2] The values of the Dedekind–Rademacher cocycle at real multiplication points, J. Eur. Math. Soc., Volume 26 (2023) no. 10, pp. 3987-4032 | DOI | MR | Zbl
[3] Eisenstein cocycles over imaginary quadratic fields and special values of -functions, J. Number Theory, Volume 204 (2019), pp. 497-531 | Zbl | DOI | MR
[4] Modular symbols in Iwasawa theory, Iwasawa theory 2012 (Contributions in Mathematical and Computational Sciences), Volume 7, Springer, 2014, pp. 177-219 | MR | DOI | Zbl
[5] A function on the upper half space which is analogous to the imaginary part of , J. Reine Angew. Math., Volume 373 (1987), pp. 148-165 | DOI | MR | Zbl
[6] On the arithmetic of special values of functions, Invent. Math., Volume 55 (1979) no. 3, pp. 207-240 | DOI | MR | Zbl
[7] Dedekind sums, The Carus Mathematical Monographs, 16, Mathematical Association of America, 1972, xvi+102 pages | MR | DOI | Zbl
[8] Über den Laplace-Operator auf Riemannschen Mannigfaltigkeiten mit diskontinuierlichen Gruppen, Math. Nachr., Volume 21 (1960) no. 3-5, pp. 131-149 | DOI | MR | Zbl
[9] Dedekindsummen mit elliptischen Funktionen, Invent. Math., Volume 76 (1984) no. 3, pp. 523-551 | DOI | MR | Zbl
[10] Eisenstein cocycles in motivic cohomology (2024), pp. 2407-2479
[11] Eisensteinkohomologie und Dedekindsummen für über imaginär-quadratischen Zahlkörpern, J. Reine Angew. Math., Volume 389 (1988), pp. 90-121 | DOI | MR | Zbl
Cité par Sources :