Large Sums of Fourier Coefficients of Cusp Forms
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 171-188

Let $N$ be a fixed positive integer, and let $f\in S_k(N)$ be a primitive cusp form given by the Fourier expansion $f(z)=\sum _{n=1}^{\infty } \lambda _f(n)n^{\frac{k-1}{2}}e(nz)$. We consider the partial sum $S(x,f)=\sum _{n\le x}\lambda _f(n)$. It is conjectured that $S(x,f)=o(x\log x)$ in the range $x\ge k^{\epsilon }$. Lamzouri proved in [8] that this is true under the assumption of the Generalized Riemann Hypothesis (GRH) for $L(s,f)$. In this paper, we prove that this conjecture holds under a weaker assumption than GRH. In particular, we prove that given $\epsilon >(\log k)^{-\frac{1}{8}}$ and $1\le T\le (\log k)^{\frac{1}{200}}$, we have $S(x,f)\ll \frac{x\log x}{T}$ in the range $x\ge k^{\epsilon }$ provided that $L(s,f)$ has no more than $\epsilon ^2\log k/5000$ zeros in the region $\left\lbrace s\,:\, \Re (s)\ge \frac{3}{4}, \, |\Im (s)-\phi | \le \frac{1}{4}\right\rbrace $ for every real number $\phi $ with $|\phi |\le T$.

Soit $N$ un entier positif et soit $f \in S_k(N)$ une forme cuspidale primitive admettant le développement en série de Fourier $f(z)= \sum _{n=1}^{\infty } \lambda _f(n)n^{\frac{k-1}{2}}e(nz)$. Nous étudions les sommes partielles $S(x,f)= \sum _{n\le x}\lambda _f(n)$, pour lesquelles il est conjecturé que $S(x,f)=o(x\log x)$ quand $x\ge k^{\epsilon }$. Dans [8], Lamzouri démontre cette conjecture en supposant que $L(s,f)$ satisfasse l’hypothèse de Riemann géneralisée. Dans cet article, nous démontrons la conjecture sous des hypothèses plus faibles. Plus précisément, nous démontrons qu’étant donnés $\epsilon >(\log k)^{-\frac{1}{8}}$ et $1\le T\le (\log k)^{\frac{1}{200}}$, on a $S(x,f)\ll \frac{x\log x}{T}$ quand $x\ge k^{\epsilon }$, pourvu que pour tout nombre réel $\phi $ tel que $|\phi |\le T$, la fonction $L(s,f)$ n’ait pas plus de $\epsilon ^2\log k/5000$ zéros dans la région $\left\lbrace s\,:\, \Re (s)\ge \frac{3}{4}, \, |\Im (s)-\phi | \le \frac{1}{4}\right\rbrace $.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1318
Classification : 11F30, 11F11, 11F12, 11M41
Keywords: Modular forms, Sums of Fourier coefficients, zeros of $L$-functions, mean values of multiplicative functions.

Claire Frechette 1 ; Mathilde Gerbelli-Gauthier 2 ; Alia Hamieh 3 ; Naomi Tanabe 4

1 Boston College, Department of Mathematics, Chestnut Hill, MA 02467, USA
2 University of Toronto, Department of Mathematics, Toronto, ON M5S 2E4, Canada
3 University of Northern British Columbia, Department of Mathematics and Statistics, Prince George, BC V2N 4Z9, Canada
4 Bowdoin College, Department of Mathematics, Brunswick, ME 04011, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_1_171_0,
     author = {Claire Frechette and Mathilde Gerbelli-Gauthier and Alia Hamieh and Naomi Tanabe},
     title = {Large {Sums} of {Fourier} {Coefficients} of {Cusp} {Forms}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {171--188},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {1},
     doi = {10.5802/jtnb.1318},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1318/}
}
TY  - JOUR
AU  - Claire Frechette
AU  - Mathilde Gerbelli-Gauthier
AU  - Alia Hamieh
AU  - Naomi Tanabe
TI  - Large Sums of Fourier Coefficients of Cusp Forms
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 171
EP  - 188
VL  - 37
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1318/
DO  - 10.5802/jtnb.1318
LA  - en
ID  - JTNB_2025__37_1_171_0
ER  - 
%0 Journal Article
%A Claire Frechette
%A Mathilde Gerbelli-Gauthier
%A Alia Hamieh
%A Naomi Tanabe
%T Large Sums of Fourier Coefficients of Cusp Forms
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 171-188
%V 37
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1318/
%R 10.5802/jtnb.1318
%G en
%F JTNB_2025__37_1_171_0
Claire Frechette; Mathilde Gerbelli-Gauthier; Alia Hamieh; Naomi Tanabe. Large Sums of Fourier Coefficients of Cusp Forms. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 171-188. doi: 10.5802/jtnb.1318

[1] Pierre Deligne La conjecture de Weil. I, Publ. Math., Inst. Hautes Étud. Sci., Volume 43 (1974), pp. 273-307 | DOI | Numdam | Zbl

[2] Andrew Granville; Adam J. Harper; Kannan Soundararajan A new proof of Halász’s theorem, and its consequences, Compos. Math., Volume 155 (2019) no. 1, pp. 126-163 | DOI | MR | Zbl

[3] Andrew Granville; Kannan Soundararajan Large character sums, J. Am. Math. Soc., Volume 14 (2001) no. 2, pp. 365-397 | DOI | MR | Zbl

[4] Andrew Granville; Kannan Soundararajan Large character sums: Burgess’s theorem and zeros of L-functions, J. Eur. Math. Soc., Volume 20 (2018) no. 1, pp. 1-14 | DOI | MR | Zbl

[5] James Lee Hafner; Aleksandar Ivić On sums of Fourier coefficients of cusp forms, Enseign. Math. (2), Volume 35 (1989) no. 3-4, pp. 375-382 | MR | Zbl

[6] Erich Hecke Theorie der Eisensteinsche Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Hamb., Volume 5 (1927), pp. 199-224 | DOI | Zbl

[7] Henryk Iwaniec; Emmanuel Kowalski Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004, xii+615 pages | Zbl | MR

[8] Youness Lamzouri Large sums of Hecke eigenvalues of holomorphic cusp forms, Forum Math., Volume 31 (2019) no. 2, pp. 403-417 | DOI | MR | Zbl

[9] Alexander P. Mangerel Divisor-bounded multiplicative functions in short intervals, Res. Math. Sci., Volume 10 (2023) no. 1, pp. 1-47 | MR | Zbl

[10] Philippe Michel; Akshay Venkatesh The subconvexity problem for GL 2 , Publ. Math., Inst. Hautes Étud. Sci., Volume 111 (2010), pp. 171-271 | DOI | MR | Zbl

[11] Arnold Walfisz Über die Koeffizientensummen einiger Moduformen, Math. Ann., Volume 108 (1933), pp. 75-90 | DOI | MR | Zbl

Cité par Sources :