A note on some Diophantine inequalities over adelic curves
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 143-152

Without assuming the Northcott property we provide an upper bound on the number of “big solutions” of a special system of Diophantine inequalities over proper adelic curves. This system is interesting since it is a stronger version of Roth’s inequality for adelic curves.

Sans supposer la propriété de Northcott, nous donnons une majoration pour le nombre de « grandes solutions »  d’un système spécial d’inégalités diophantiennes sur les courbes adéliques propres. Ce système est intéressant car il s’agit d’une version renforcée de l’inégalité de Roth pour les courbes adéliques.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1316
Classification : 11DXX, 11JXX
Keywords: Diophantine Inequalities, Roth’s Theorem, Adelic Curves

Paolo Dolce 1

1 Institute for Theoretical science, Westlake University
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_1_143_0,
     author = {Paolo Dolce},
     title = {A note on some {Diophantine} inequalities over adelic curves},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {143--152},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {1},
     doi = {10.5802/jtnb.1316},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1316/}
}
TY  - JOUR
AU  - Paolo Dolce
TI  - A note on some Diophantine inequalities over adelic curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 143
EP  - 152
VL  - 37
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1316/
DO  - 10.5802/jtnb.1316
LA  - en
ID  - JTNB_2025__37_1_143_0
ER  - 
%0 Journal Article
%A Paolo Dolce
%T A note on some Diophantine inequalities over adelic curves
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 143-152
%V 37
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1316/
%R 10.5802/jtnb.1316
%G en
%F JTNB_2025__37_1_143_0
Paolo Dolce. A note on some Diophantine inequalities over adelic curves. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 143-152. doi: 10.5802/jtnb.1316

[1] Enrico Bombieri; Alfred J. van der Poorten Some quantitative results related to Roth’s theorem, J. Aust. Math. Soc., Ser. A, Volume 45 (1988) no. 2, pp. 233-248 | DOI | Zbl | MR

[2] Enrico Bombieri; Alfred J. van der Poorten Corrigenda: “Some quantitative results related to Roth’s theorem”, J. Aust. Math. Soc., Ser. A, Volume 48 (1990) no. 1, pp. 154-155 | DOI | Zbl | MR

[3] Yann Bugeaud; Kálmán Györy Bounds for the solutions of unit equations, Acta Arith., Volume 74 (1996) no. 1, pp. 67-80 | DOI | MR | Zbl

[4] Huayi Chen; Atushi Moriwaki Arakelov geometry over Adelic curves, Lecture Notes in Mathematics, 2258, Springer, 2020 | DOI | Zbl | MR

[5] Huayi Chen; Atushi Moriwaki Arithmetic intersection theory over adelic curves (2021) | arXiv | Zbl

[6] Pietro Corvaja Autour du théorème de Roth, Monatsh. Math., Volume 124 (1997) no. 2, pp. 147-175 | Zbl | DOI | MR

[7] Harold Davenport; Klaus F. Roth Rational approximations to algebraic numbers, Mathematika, Volume 2 (1955), pp. 160-167 | Zbl | DOI | MR

[8] Paolo Dolce; Francesco Zucconi On the generalisation of Roth’s theorem (2023) (in press in Kyoto J. Math., preprint available at https://arxiv.org/abs/2111.12409)

[9] Hélène Esnault; Eckart Viehweg Dyson’s lemma for polynomials in several variables (and the theorem of Roth), Invent. Math., Volume 78 (1984) no. 3, pp. 445-490 | Zbl | DOI | MR

[10] Jan-Hendrik Evertse On equations in S-units and the Thue–Mahler equation, Invent. Math., Volume 75 (1984) no. 3, pp. 561-584 | Zbl | DOI | MR

[11] Robert Gross A note on Roth’s theorem, J. Number Theory, Volume 36 (1990) no. 1, pp. 127-132 | Zbl | DOI | MR

[12] Wolfgang Schmidt The number of exceptional approximations in Roth’s theorem, J. Aust. Math. Soc., Ser. A, Volume 59 (1995) no. 3, pp. 375-383 | DOI | Zbl | MR

[13] Paul Vojta Roth’s Theorem over arithmetic function fields, Algebra Number Theory, Volume 15 (2021) no. 8, pp. 1943-2017 | DOI | MR | Zbl

[14] Umberto Zannier Lecture notes on Diophantine analysis, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie), 8, Edizioni della Normale, 2009, xvi+237 pages (with an appendix by Francesco Amoroso) | MR | Zbl

Cité par Sources :