Let $K$ be a finite Galois extension of $\mathbb{Q}$ and let $\rho $ be an irreducible self-dual complex representation of $\mathrm{Gal}(K/\mathbb{Q})$. For an elliptic curve $E$ over $\mathbb{Q}$ let $W(E,\rho )$ be the root number in the functional equation of $L(s,E,\rho )$. We give an example where $\rho $ is of dimension 4 and Schur index 1 but $W(E,\rho )=1$ for all $E$ over $\mathbb{Q}$. The image of $\rho $ has order 32.
Soient $K$ une extension galoisienne finie de $\mathbb{Q}$ et $\rho $ une représentation irréductible autoduale de $\mathrm{Gal}(K/\mathbb{Q})$ sur $\mathbb{C}$. Si $E$ est une courbe elliptique sur $\mathbb{Q},$ notons $W(E,\rho )$ le signe de l’équation fonctionnelle de la fonction $L$ tordue $L(s,E,\rho )$. Nous donnons un exemple où $W(E,\rho )$ est égal à 1 pour toute courbe elliptique $E$ sur $\mathbb{Q}$ bien que l’indice de Schur de $\rho $ soit $1$. La dimension de $\rho $ est 4 et son image est un groupe d’ordre 32.
Révisé le :
Accepté le :
Publié le :
Keywords: elliptic curve, Mordell–Weil group, Artin representation
David E. Rohrlich 1
CC-BY-ND 4.0
@article{JTNB_2025__37_1_125_0,
author = {David E. Rohrlich},
title = {Multiplicities in {Mordell{\textendash}Weil} groups},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {125--142},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {1},
doi = {10.5802/jtnb.1315},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1315/}
}
TY - JOUR AU - David E. Rohrlich TI - Multiplicities in Mordell–Weil groups JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 125 EP - 142 VL - 37 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1315/ DO - 10.5802/jtnb.1315 LA - en ID - JTNB_2025__37_1_125_0 ER -
%0 Journal Article %A David E. Rohrlich %T Multiplicities in Mordell–Weil groups %J Journal de théorie des nombres de Bordeaux %D 2025 %P 125-142 %V 37 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1315/ %R 10.5802/jtnb.1315 %G en %F JTNB_2025__37_1_125_0
David E. Rohrlich. Multiplicities in Mordell–Weil groups. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 125-142. doi: 10.5802/jtnb.1315
[1] Databases of elliptic curves ordered by height and distributions of Selmer groups and ranks, LMS J. Comput. Math., Volume 19A (2016) no. 2016, pp. 351-370 (special issue Algorithmic Number Theory Symposium XII) | Zbl | DOI | MR
[2] Average ranks of elliptic curves: Tension between data and conjecture, Bull. Am. Math. Soc., Volume 44 (2007) no. 2, pp. 233-254 | DOI | MR | Zbl
[3] 3-isogeny Selmer groups and ranks of abelian varieties in quadratic twist families over a number field, Duke Math. J., Volume 168 (2019) no. 15, pp. 2951-2989 | MR | Zbl
[4] Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, Ann. Math., Volume 181 (2015) no. 1, pp. 191-242 | DOI | Zbl
[5] Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0, Ann. Math., Volume 181 (2015) no. 2, pp. 587-621 | DOI | Zbl
[6] A majority of elliptic curves over satisfy the Birch and Swinnerton-Dyer conjecture (2014) | arXiv | Zbl
[7] The parity of the rank of the Mordell-Weil group, Topology, Volume 5 (1966), pp. 295-299 | DOI | MR | Zbl
[8] Explicit root numbers of abelian varieties, Trans. Am. Math. Soc., Volume 372 (2019) no. 11, pp. 7889-7920 | Zbl | DOI | MR
[9] Explicit determination of root numbers of abelian varieties, Trans. Am. Math. Soc., Volume 370 (2018) no. 4, pp. 2589-2604 | DOI | MR | Zbl
[10] Valeurs de fonctions et périodes d’intégrales, Automorphic Forms, Representations, and -functions (Proceedings of Symposia in Pure Mathematics), Volume 33. Part 2, American Mathematical Society, 1979, pp. 313-346 | DOI | Zbl
[11] Regulator constants and the parity conjecture, Invent. Math., Volume 178 (2009) no. 1, pp. 23-71 | DOI | MR | Zbl
[12] On the Birch–Swinnerton–Dyer quotients modulo squares, Ann. Math., Volume 172 (2010) no. 1, pp. 567-596 | DOI | Zbl
[13] Root numbers and parity of ranks of elliptic curves, J. Reine Angew. Math., Volume 658 (2011), pp. 39-64 | Zbl | MR
[14] Parity conjecture for abelian surfaces, Proc. Lond. Math. Soc., Volume 127 (2023) no. 2, pp. 295-365 | DOI | Zbl
[15] Artin root numbers and normal integral bases for quaternion fields, Invent. Math., Volume 17 (1972), pp. 143-166 | DOI | MR | Zbl
[16] Conjectures on elliptic curves over quadratic fields, Number theory, Carbondale 1979. Proceedings of the Southern Illinois number theory conference, Carbondale, March 30 and 31, 1979 (Lecture Notes in Mathematics), Volume 751, Springer, 1979, pp. 108-118 | MR | Zbl
[17] Arithmetic on Elliptic Curves with Complex Multiplication, Lecture Notes in Mathematics, 776, Springer, 1980 | DOI | MR | Zbl
[18] The average analytic rank of elliptic curves, Duke Math. J., Volume 122 (2004) no. 3, pp. 591-623 | MR | Zbl
[19] Die Gruppen der Ordnungen , , , , Math. Ann., Volume 43 (1893), pp. 301-412 | DOI | MR | Zbl
[20] Goldfeld’s conjecture and congruences between Heegner points, Forum Math. Sigma, Volume 7 (2019), e15, 80 pages | MR | Zbl
[21] Prime twists of elliptic curves, Math. Res. Lett., Volume 26 (2019) no. 4, pp. 1187-1195 | DOI | MR | Zbl
[22] Invariance of the parity conjecture for -Selmer groups of elliptic curves in a -extension, Bull. Soc. Math. Fr., Volume 139 (2011) no. 4, pp. 571-592 | DOI | MR | Zbl
[23] Signes locaux et nombres de Tamagawa, J. Théor. Nombres Bordeaux, Volume 28 (2016), pp. 1-38 | MR | Numdam | Zbl | DOI
[24] A formula for the root number of a family of elliptic curves, J. Number Theory, Volume 51 (1995) no. 2, pp. 288-305 | DOI | MR | Zbl
[25] A note on the growth of Mordell-Weil ranks of elliptic curves in cyclotomic extensions, Proc. Japan Acad., Ser. A, Volume 79 (2003) no. 5, pp. 101-104 | MR | Zbl
[26] Nonvanishing of quadratic twists of modular -functions and applications to elliptic curves, J. Reine Angew. Math., Volume 533 (2001), pp. 81-97 | MR | Zbl
[27] Non-vanishing of quadratic twists of modular L-functions, Invent. Math., Volume 134 (1998) no. 3, pp. 651-660 | MR | Zbl
[28] A heuristic for boundedness of ranks of elliptic curves, J. Eur. Math. Soc., Volume 21 (2019) no. 9, pp. 2859-2903 | DOI | MR | Zbl
[29] Averages of twisted elliptic -functions, Acta Arith., Volume 80 (1997) no. 2, pp. 149-163 | DOI | MR | Zbl
[30] The vanishing of certain Rankin–Selberg convolutions, Automorphic Forms and Analytic Number Theory, Centre de Recherches Mathématiques (CRM), 1990, pp. 12-133 | Zbl
[31] Elliptic curves and the Weil–Deligne group, Elliptic curves and related topics (CRM Proceedings & Lecture Notes), Volume 4, American Mathematical Society, 1994, pp. 125-157 | DOI | Zbl
[32] Galois theory, elliptic curves, and root numbers, Compos. Math., Volume 100 (1996) no. 3, pp. 311-349 | Numdam | MR | Zbl
[33] Realization of some Galois representations of low degree in Mordell–Weil groups, Math. Res. Lett., Volume 4 (1997) no. 1, pp. 123-130 | DOI | MR | Zbl
[34] Root numbers of abelian varieties, Trans. Am. Math. Soc., Volume 359 (2007) no. 9, pp. 4259-4284 | DOI | MR | Zbl
[35] Linear Representations of Finite Groups, Graduate Studies in Mathematics, 42, Springer, 1977, x+170 pages | DOI | Zbl
[36] -Selmer groups, -class groups, and Goldfeld’s conjecture (2017) | arXiv | Zbl
[37] Realizing Galois representations in abelian varieties by specialization (2023) | arXiv | Zbl
[38] The rank of elliptic curves, Dokl. Akad. Nauk SSSR, Volume 175 (1967), pp. 770-773
[39] Elliptic curves with large rank over function fields, Ann. Math., Volume 155 (2002) no. 1, pp. 295-315 | DOI | Zbl
[40] Some heuristics about elliptic curves, Exp. Math., Volume 17 (2008) no. 1, pp. 105-125 | Zbl | DOI | MR
[41] The groups of order sixteen made easy, Am. Math. Mon., Volume 112 (2005) no. 1, pp. 20-31 | DOI | MR | Zbl
[42] On the determination of the groups whose order is a power of a prime, Am. J. Math., Volume 15 (1893), pp. 124-178 | DOI | MR | Zbl
Cité par Sources :