Multiplicities in Mordell–Weil groups
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 125-142

Let $K$ be a finite Galois extension of $\mathbb{Q}$ and let $\rho $ be an irreducible self-dual complex representation of $\mathrm{Gal}(K/\mathbb{Q})$. For an elliptic curve $E$ over $\mathbb{Q}$ let $W(E,\rho )$ be the root number in the functional equation of $L(s,E,\rho )$. We give an example where $\rho $ is of dimension 4 and Schur index 1 but $W(E,\rho )=1$ for all $E$ over $\mathbb{Q}$. The image of $\rho $ has order 32.

Soient $K$ une extension galoisienne finie de $\mathbb{Q}$ et $\rho $ une représentation irréductible autoduale de $\mathrm{Gal}(K/\mathbb{Q})$ sur $\mathbb{C}$. Si $E$ est une courbe elliptique sur $\mathbb{Q},$ notons $W(E,\rho )$ le signe de l’équation fonctionnelle de la fonction $L$ tordue $L(s,E,\rho )$. Nous donnons un exemple où $W(E,\rho )$ est égal à 1 pour toute courbe elliptique $E$ sur $\mathbb{Q}$ bien que l’indice de Schur de $\rho $ soit $1$. La dimension de $\rho $ est 4 et son image est un groupe d’ordre 32.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1315
Classification : 11G05, 11R32
Keywords: elliptic curve, Mordell–Weil group, Artin representation

David E. Rohrlich 1

1 Department of Mathematics and Statistics Boston University Boston, MA 02215 U. S. A.
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_1_125_0,
     author = {David E. Rohrlich},
     title = {Multiplicities in {Mordell{\textendash}Weil} groups},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {125--142},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {1},
     doi = {10.5802/jtnb.1315},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1315/}
}
TY  - JOUR
AU  - David E. Rohrlich
TI  - Multiplicities in Mordell–Weil groups
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 125
EP  - 142
VL  - 37
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1315/
DO  - 10.5802/jtnb.1315
LA  - en
ID  - JTNB_2025__37_1_125_0
ER  - 
%0 Journal Article
%A David E. Rohrlich
%T Multiplicities in Mordell–Weil groups
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 125-142
%V 37
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1315/
%R 10.5802/jtnb.1315
%G en
%F JTNB_2025__37_1_125_0
David E. Rohrlich. Multiplicities in Mordell–Weil groups. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 125-142. doi: 10.5802/jtnb.1315

[1] Jennifer S. Balakrishnan; Wei Ho; Nathan Kaplan; Simon Spicer; William Stein; James Weigandt Databases of elliptic curves ordered by height and distributions of Selmer groups and ranks, LMS J. Comput. Math., Volume 19A (2016) no. 2016, pp. 351-370 (special issue Algorithmic Number Theory Symposium XII) | Zbl | DOI | MR

[2] Baur Bektemirov; Barry Mazur; William Stein; Mark Watkins Average ranks of elliptic curves: Tension between data and conjecture, Bull. Am. Math. Soc., Volume 44 (2007) no. 2, pp. 233-254 | DOI | MR | Zbl

[3] Manjul Bhargava; Zev Klagsbrun; Robert J. Lemke Oliver; Ari Shnidman 3-isogeny Selmer groups and ranks of abelian varieties in quadratic twist families over a number field, Duke Math. J., Volume 168 (2019) no. 15, pp. 2951-2989 | MR | Zbl

[4] Manjul Bhargava; Arul Shankar Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, Ann. Math., Volume 181 (2015) no. 1, pp. 191-242 | DOI | Zbl

[5] Manjul Bhargava; Arul Shankar Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0, Ann. Math., Volume 181 (2015) no. 2, pp. 587-621 | DOI | Zbl

[6] Manjul Bhargava; Christopher Skinner; Wei Zhang A majority of elliptic curves over satisfy the Birch and Swinnerton-Dyer conjecture (2014) | arXiv | Zbl

[7] Bryan J. Birch; Nelson M. Stephens The parity of the rank of the Mordell-Weil group, Topology, Volume 5 (1966), pp. 295-299 | DOI | MR | Zbl

[8] Matthew Bisatt Explicit root numbers of abelian varieties, Trans. Am. Math. Soc., Volume 372 (2019) no. 11, pp. 7889-7920 | Zbl | DOI | MR

[9] Armand Brumer; Kenneth Kramer; Maria Sabitova Explicit determination of root numbers of abelian varieties, Trans. Am. Math. Soc., Volume 370 (2018) no. 4, pp. 2589-2604 | DOI | MR | Zbl

[10] Pierre Deligne Valeurs de fonctions L et périodes d’intégrales, Automorphic Forms, Representations, and L-functions (Proceedings of Symposia in Pure Mathematics), Volume 33. Part 2, American Mathematical Society, 1979, pp. 313-346 | DOI | Zbl

[11] Tim Dokchitser; Vladimir Dokchitser Regulator constants and the parity conjecture, Invent. Math., Volume 178 (2009) no. 1, pp. 23-71 | DOI | MR | Zbl

[12] Tim Dokchitser; Vladimir Dokchitser On the Birch–Swinnerton–Dyer quotients modulo squares, Ann. Math., Volume 172 (2010) no. 1, pp. 567-596 | DOI | Zbl

[13] Tim Dokchitser; Vladimir Dokchitser Root numbers and parity of ranks of elliptic curves, J. Reine Angew. Math., Volume 658 (2011), pp. 39-64 | Zbl | MR

[14] Vladimir Dokchitser; Céline Maistret Parity conjecture for abelian surfaces, Proc. Lond. Math. Soc., Volume 127 (2023) no. 2, pp. 295-365 | DOI | Zbl

[15] Albrecht Fröhlich Artin root numbers and normal integral bases for quaternion fields, Invent. Math., Volume 17 (1972), pp. 143-166 | DOI | MR | Zbl

[16] Dorian Goldfeld Conjectures on elliptic curves over quadratic fields, Number theory, Carbondale 1979. Proceedings of the Southern Illinois number theory conference, Carbondale, March 30 and 31, 1979 (Lecture Notes in Mathematics), Volume 751, Springer, 1979, pp. 108-118 | MR | Zbl

[17] Benedict Gross Arithmetic on Elliptic Curves with Complex Multiplication, Lecture Notes in Mathematics, 776, Springer, 1980 | DOI | MR | Zbl

[18] D. Roger Heath-Brown The average analytic rank of elliptic curves, Duke Math. J., Volume 122 (2004) no. 3, pp. 591-623 | MR | Zbl

[19] Otto Hölder Die Gruppen der Ordnungen p 3 , pq 2 , pqr, p 4 , Math. Ann., Volume 43 (1893), pp. 301-412 | DOI | MR | Zbl

[20] Daniel Kriz; Chao Li Goldfeld’s conjecture and congruences between Heegner points, Forum Math. Sigma, Volume 7 (2019), e15, 80 pages | MR | Zbl

[21] Daniel Kriz; Chao Li Prime twists of elliptic curves, Math. Res. Lett., Volume 26 (2019) no. 4, pp. 1187-1195 | DOI | MR | Zbl

[22] Thomas de La Rochefoucauld Invariance of the parity conjecture for p-Selmer groups of elliptic curves in a D 2p n -extension, Bull. Soc. Math. Fr., Volume 139 (2011) no. 4, pp. 571-592 | DOI | MR | Zbl

[23] Thomas de La Rochefoucauld Signes locaux et nombres de Tamagawa, J. Théor. Nombres Bordeaux, Volume 28 (2016), pp. 1-38 | MR | Numdam | Zbl | DOI

[24] Eric Liverance A formula for the root number of a family of elliptic curves, J. Number Theory, Volume 51 (1995) no. 2, pp. 288-305 | DOI | MR | Zbl

[25] Kazuo Matsuno A note on the growth of Mordell-Weil ranks of elliptic curves in cyclotomic Z p extensions, Proc. Japan Acad., Ser. A, Volume 79 (2003) no. 5, pp. 101-104 | MR | Zbl

[26] Ken Ono Nonvanishing of quadratic twists of modular L-functions and applications to elliptic curves, J. Reine Angew. Math., Volume 533 (2001), pp. 81-97 | MR | Zbl

[27] Ken Ono; Christopher Skinner Non-vanishing of quadratic twists of modular L-functions, Invent. Math., Volume 134 (1998) no. 3, pp. 651-660 | MR | Zbl

[28] Jennifer Park; Bjorn Poonen; John Voight; Melanie Matchett Wood A heuristic for boundedness of ranks of elliptic curves, J. Eur. Math. Soc., Volume 21 (2019) no. 9, pp. 2859-2903 | DOI | MR | Zbl

[29] Alberto Perelli; Jacek Pomykala Averages of twisted elliptic L-functions, Acta Arith., Volume 80 (1997) no. 2, pp. 149-163 | DOI | MR | Zbl

[30] David E. Rohrlich The vanishing of certain Rankin–Selberg convolutions, Automorphic Forms and Analytic Number Theory, Centre de Recherches Mathématiques (CRM), 1990, pp. 12-133 | Zbl

[31] David E. Rohrlich Elliptic curves and the Weil–Deligne group, Elliptic curves and related topics (CRM Proceedings & Lecture Notes), Volume 4, American Mathematical Society, 1994, pp. 125-157 | DOI | Zbl

[32] David E. Rohrlich Galois theory, elliptic curves, and root numbers, Compos. Math., Volume 100 (1996) no. 3, pp. 311-349 | Numdam | MR | Zbl

[33] David E. Rohrlich Realization of some Galois representations of low degree in Mordell–Weil groups, Math. Res. Lett., Volume 4 (1997) no. 1, pp. 123-130 | DOI | MR | Zbl

[34] Maria Sabitova Root numbers of abelian varieties, Trans. Am. Math. Soc., Volume 359 (2007) no. 9, pp. 4259-4284 | DOI | MR | Zbl

[35] Jean-Pierre Serre Linear Representations of Finite Groups, Graduate Studies in Mathematics, 42, Springer, 1977, x+170 pages | DOI | Zbl

[36] Alexander Smith 2 -Selmer groups, 2 -class groups, and Goldfeld’s conjecture (2017) | arXiv | Zbl

[37] Arvind Suresh Realizing Galois representations in abelian varieties by specialization (2023) | arXiv | Zbl

[38] John Tate; Igor Shafarevich The rank of elliptic curves, Dokl. Akad. Nauk SSSR, Volume 175 (1967), pp. 770-773

[39] Douglas Ulmer Elliptic curves with large rank over function fields, Ann. Math., Volume 155 (2002) no. 1, pp. 295-315 | DOI | Zbl

[40] Mark Watkins Some heuristics about elliptic curves, Exp. Math., Volume 17 (2008) no. 1, pp. 105-125 | Zbl | DOI | MR

[41] Marcel Wild The groups of order sixteen made easy, Am. Math. Mon., Volume 112 (2005) no. 1, pp. 20-31 | DOI | MR | Zbl

[42] J. Young On the determination of the groups whose order is a power of a prime, Am. J. Math., Volume 15 (1893), pp. 124-178 | DOI | MR | Zbl

Cité par Sources :