For
Pour un nombre premier
Révisé le :
Accepté le :
Publié le :
Keywords: Number fields, lattices, equidistribution, carefree tuples
Erik Holmes 1

@article{JTNB_2025__37_1_1_0, author = {Erik Holmes}, title = {On the shapes of pure prime-degree number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--48}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {37}, number = {1}, year = {2025}, doi = {10.5802/jtnb.1311}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1311/} }
TY - JOUR AU - Erik Holmes TI - On the shapes of pure prime-degree number fields JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 1 EP - 48 VL - 37 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1311/ DO - 10.5802/jtnb.1311 LA - en ID - JTNB_2025__37_1_1_0 ER -
%0 Journal Article %A Erik Holmes %T On the shapes of pure prime-degree number fields %J Journal de théorie des nombres de Bordeaux %D 2025 %P 1-48 %V 37 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1311/ %R 10.5802/jtnb.1311 %G en %F JTNB_2025__37_1_1_0
Erik Holmes. On the shapes of pure prime-degree number fields. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 1-48. doi : 10.5802/jtnb.1311. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1311/
[1] On the number of pure fields of prime degree, Colloq. Math., Volume 153 (2018) no. 1, pp. 39-50 | DOI | MR | Zbl
[2] Higher composition laws III: The parametrization of quartic rings, Ann. Math. (2), Volume 159 (2004) no. 3, pp. 1329-1360 | DOI | Zbl
[3] The density of discriminants of quartic rings and fields, Ann. Math. (2), Volume 162 (2005) no. 2, pp. 1031-1063 | DOI | Zbl
[4] Higher composition laws IV: The parametrization of quintic rings, Ann. Math. (2), Volume 167 (2008) no. 1, pp. 53-94 | DOI | Zbl
[5] The equidistribution of lattice shapes of rings of integers in cubic, quartic, and quintic number fields, Compos. Math., Volume 152 (2016) no. 6, pp. 1111-1120 | DOI | MR | Zbl
[6] Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, Ann. Math. (2), Volume 181 (2015) no. 1, pp. 191-242 | DOI | Zbl
[7] On the number of cubic orders of bounded discriminant having automorphism group
[8] The trace form over cyclic number fields, Can. J. Math., Volume 73 (2021) no. 4, pp. 947-969 | DOI | MR | Zbl
[9] Maillet’s determinant, Proc. Am. Math. Soc., Volume 6 (1955), pp. 265-269 | MR | Zbl
[10] Counting cubic extensions with given quadratic resolvent, J. Algebra, Volume 325 (2011) no. 1, pp. 461-478 | DOI | MR | Zbl
[11] On
[12] On a principle of Lipschitz, J. Lond. Math. Soc., Volume 26 (1951), pp. 179-183 | DOI | MR | Zbl
[13] On the density of discriminants of cubic fields. II, Proc. R. Soc. Lond., Ser. A, Volume 322 (1971) no. 1551, pp. 405-420 | MR | Zbl
[14] The shapes of galois quartic fields, Trans. Am. Math. Soc., Volume 373 (2020) no. 10, pp. 7109-7152 | MR | Zbl
[15] The shapes of pure cubic fields, Proc. Am. Math. Soc., Volume 145 (2017) no. 2, pp. 509-524 | DOI | MR | Zbl
[16] Equidistribution of shapes of complex cubic fields of fixed quadratic resolvent, Algebra Number Theory, Volume 15 (2021) no. 5, pp. 1095-1125 | DOI | MR | Zbl
[17] Shapes of sextic fields and log-terms in Malle’s conjecture (2025) (in preparation)
[18] On shapes of multiquadratic extensions, Ph. D. Thesis, University of Hawai’i, Manoa, USA (2019)
[19] Integral Basis Of Pure Prime Degree Number Fields, Indian J. Pure Appl. Math., Volume 50 (2019), pp. 309-314 | DOI | MR | Zbl
[20] A counter example to Malle’s conjecture on the asymptotics of discriminants, C. R. Math., Volume 340 (2005) no. 6, pp. 411-414 | DOI | Numdam | Zbl
[21] On the distribution of Galois groups, J. Number Theory, Volume 92 (2002) no. 2, pp. 315-322 | DOI | Zbl
[22] The Shape of
[23] The theorems of Frobenius and Suzuki on finite groups (retrieved from https://terrytao.wordpress.com/2013/04/12)
[24] The distribution of shapes of cubic orders, Ph. D. Thesis, University of California, Berkeley, USA (1997)
[25] On Maillet determinant, J. Number Theory, Volume 18 (1984) no. 3, pp. 306-312 | DOI | MR | Zbl
Cité par Sources :