On the shapes of pure prime-degree number fields
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 1-48.

For p prime and =p12, we show that the shapes of pure prime degree number fields lie on one of two -dimensional subspaces of the space of shapes, and which of the two subspaces is dictated by whether or not p ramifies wildly. When the fields are ordered by absolute discriminant we show that the shapes are equidistributed, in a regularized sense, on these subspaces. We also show that the shape is a complete invariant within the family of pure prime degree fields. This extends the results of Harron, in [15], who studied shapes in the case of pure cubic number fields. Furthermore we translate the statements of pure prime degree number fields to statements about Frobenius number fields with a fixed resolvent field. Specifically we show that this study is equivalent to the study of Fp-number fields, Fp=CpCp1, with fixed resolvent field Q(ζp).

Pour un nombre premier p et =p12, nous montrons que la shape (forme) d’un corps de nombres pur de degré premier appartient à l’un de deux sous-espaces de dimension de l’espace des formes, selon que p est sauvagement ramifié ou non. Lorsque ces corps sont ordonnés par leur discriminant absolu, nous démontrons que les formes sont équidistribuées, au sens régularisé, sur ces sous-espaces. Nous montrons également que la forme constitue un invariant complet au sein de la famille des corps purs de degré premier. Ce travail généralise les résultats de Harron dans [15], qui étudie les formes dans le cas des corps cubiques purs. En outre, nous traduisons ces résultats en énoncés concernant les corps de Frobenius avec un corps résolvant fixé. Plus précisément, nous montrons que cette étude est équivalente à celle des corps de nombres de groupe de Galois Fp=CpCp1 et de corps résolvant fixé Q(ζp).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1311
Classification : 11R21, 11R45, 11P21, 11E12
Keywords: Number fields, lattices, equidistribution, carefree tuples

Erik Holmes 1

1 40 St. George Street, Room 6290, Toronto, ON M5S 2E4, Canada
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_1_1_0,
     author = {Erik Holmes},
     title = {On the shapes of pure prime-degree number fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1--48},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {1},
     year = {2025},
     doi = {10.5802/jtnb.1311},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1311/}
}
TY  - JOUR
AU  - Erik Holmes
TI  - On the shapes of pure prime-degree number fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 1
EP  - 48
VL  - 37
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1311/
DO  - 10.5802/jtnb.1311
LA  - en
ID  - JTNB_2025__37_1_1_0
ER  - 
%0 Journal Article
%A Erik Holmes
%T On the shapes of pure prime-degree number fields
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 1-48
%V 37
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1311/
%R 10.5802/jtnb.1311
%G en
%F JTNB_2025__37_1_1_0
Erik Holmes. On the shapes of pure prime-degree number fields. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 1-48. doi : 10.5802/jtnb.1311. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1311/

[1] Kübra Benli On the number of pure fields of prime degree, Colloq. Math., Volume 153 (2018) no. 1, pp. 39-50 | DOI | MR | Zbl

[2] Manjul Bhargava Higher composition laws III: The parametrization of quartic rings, Ann. Math. (2), Volume 159 (2004) no. 3, pp. 1329-1360 | DOI | Zbl

[3] Manjul Bhargava The density of discriminants of quartic rings and fields, Ann. Math. (2), Volume 162 (2005) no. 2, pp. 1031-1063 | DOI | Zbl

[4] Manjul Bhargava Higher composition laws IV: The parametrization of quintic rings, Ann. Math. (2), Volume 167 (2008) no. 1, pp. 53-94 | DOI | Zbl

[5] Manjul Bhargava; Piper Harron The equidistribution of lattice shapes of rings of integers in cubic, quartic, and quintic number fields, Compos. Math., Volume 152 (2016) no. 6, pp. 1111-1120 | DOI | MR | Zbl

[6] Manjul Bhargava; Arul Shankar Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, Ann. Math. (2), Volume 181 (2015) no. 1, pp. 191-242 | DOI | Zbl

[7] Manjul Bhargava; Ariel Shnidman On the number of cubic orders of bounded discriminant having automorphism group C3, and related problems, Algebra Number Theory, Volume 8 (2014) no. 1, pp. 53-88 | DOI | MR | Zbl

[8] Wilmar Bolanõs; Guillermo Mantilla-Soler The trace form over cyclic number fields, Can. J. Math., Volume 73 (2021) no. 4, pp. 947-969 | DOI | MR | Zbl

[9] Leonard Carlitz; Frank R. Olson Maillet’s determinant, Proc. Am. Math. Soc., Volume 6 (1955), pp. 265-269 | MR | Zbl

[10] Henri Cohen; Anna Morra Counting cubic extensions with given quadratic resolvent, J. Algebra, Volume 325 (2011) no. 1, pp. 461-478 | DOI | MR | Zbl

[11] Henri Cohen; Frank Thorne On D-extensions of odd prime degree , Proc. Lond. Math. Soc., Volume 121 (2020) no. 5, pp. 1171-1206 | DOI | MR | Zbl

[12] Harold Davenport On a principle of Lipschitz, J. Lond. Math. Soc., Volume 26 (1951), pp. 179-183 | DOI | MR | Zbl

[13] Harold Davenport; Hans Heilbronn On the density of discriminants of cubic fields. II, Proc. R. Soc. Lond., Ser. A, Volume 322 (1971) no. 1551, pp. 405-420 | MR | Zbl

[14] Piper H; Robert Harron The shapes of galois quartic fields, Trans. Am. Math. Soc., Volume 373 (2020) no. 10, pp. 7109-7152 | MR | Zbl

[15] Robert Harron The shapes of pure cubic fields, Proc. Am. Math. Soc., Volume 145 (2017) no. 2, pp. 509-524 | DOI | MR | Zbl

[16] Robert Harron Equidistribution of shapes of complex cubic fields of fixed quadratic resolvent, Algebra Number Theory, Volume 15 (2021) no. 5, pp. 1095-1125 | DOI | MR | Zbl

[17] Robert Harron; Erik Holmes; Ila Varma Shapes of sextic fields and log-terms in Malle’s conjecture (2025) (in preparation)

[18] Jamal Hassan On shapes of multiquadratic extensions, Ph. D. Thesis, University of Hawai’i, Manoa, USA (2019)

[19] Anuj Jakhar; Neeraj Sangwa Integral Basis Of Pure Prime Degree Number Fields, Indian J. Pure Appl. Math., Volume 50 (2019), pp. 309-314 | DOI | MR | Zbl

[20] Jürgen Klüners A counter example to Malle’s conjecture on the asymptotics of discriminants, C. R. Math., Volume 340 (2005) no. 6, pp. 411-414 | DOI | Numdam | Zbl

[21] Gunter Malle On the distribution of Galois groups, J. Number Theory, Volume 92 (2002) no. 2, pp. 315-322 | DOI | Zbl

[22] Guillermo Mantilla-Soler; Marina Monsurrò The Shape of /-number fields, Ramanujan J., Volume 39 (2016) no. 3, pp. 451-463 | MR | Zbl

[23] Terrance Tao The theorems of Frobenius and Suzuki on finite groups (retrieved from https://terrytao.wordpress.com/2013/04/12)

[24] David C. Terr The distribution of shapes of cubic orders, Ph. D. Thesis, University of California, Berkeley, USA (1997)

[25] Kai Wang On Maillet determinant, J. Number Theory, Volume 18 (1984) no. 3, pp. 306-312 | DOI | MR | Zbl

Cité par Sources :