When an endomorphism
In the present paper, we prove the equivalent statement when studying the variation of canonical heights of subvarieties
Pour un endomorphisme
Dans cet article, nous étudions les variations en famille de la hauteur canonique de sous-variétés
Révisé le :
Accepté le :
Publié le :
Mots-clés : Canonical height, families of polarized endomorphisms, bifurcations
Thomas Gauthier 1 ; Gabriel Vigny 2

@article{JTNB_2024__36_3_1123_0, author = {Thomas Gauthier and Gabriel Vigny}, title = {Variation of canonical heights of subvarieties for polarized endomorphisms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1123--1135}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {3}, year = {2024}, doi = {10.5802/jtnb.1310}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1310/} }
TY - JOUR AU - Thomas Gauthier AU - Gabriel Vigny TI - Variation of canonical heights of subvarieties for polarized endomorphisms JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 1123 EP - 1135 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1310/ DO - 10.5802/jtnb.1310 LA - en ID - JTNB_2024__36_3_1123_0 ER -
%0 Journal Article %A Thomas Gauthier %A Gabriel Vigny %T Variation of canonical heights of subvarieties for polarized endomorphisms %J Journal de théorie des nombres de Bordeaux %D 2024 %P 1123-1135 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1310/ %R 10.5802/jtnb.1310 %G en %F JTNB_2024__36_3_1123_0
Thomas Gauthier; Gabriel Vigny. Variation of canonical heights of subvarieties for polarized endomorphisms. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1123-1135. doi : 10.5802/jtnb.1310. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1310/
[1] Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of
[2] Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 125 pages | MR | Zbl
[3] Canonical heights on varieties with morphisms, Compos. Math., Volume 89 (1993) no. 2, pp. 163-205 | Numdam | MR | Zbl
[4] Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | MR | Zbl
[5] Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) (Contemporary Mathematics), Volume 67, American Mathematical Society, 1985, pp. 93-177 | DOI | MR
[6] Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett., Volume 8 (2001) no. 1-2, pp. 57-66 | DOI | MR | Zbl
[7] Continuity of the Green function in meromorphic families of polynomials, Algebra Number Theory, Volume 12 (2018) no. 6, pp. 1471-1487 | DOI | MR | Zbl
[8] The Geometric Dynamical Northcott and Bogomolov Properties (2019) (to appear in Ann. Sci. Éc. Norm. Supér.) | arXiv
[9] Variation of the canonical height for a family of polynomials, J. Reine Angew. Math., Volume 685 (2013), pp. 73-97 | MR | Zbl
[10] Variation of the canonical height in a family of polarized dynamical systems (2021) | arXiv
[11] Explicit canonical heights for divisors relative to endomorphisms of
[12] Fundamentals of Diophantine geometry, Springer, 1983, xviii+370 pages | DOI | MR
[13] Investigation of the stability of the dynamics of rational functions, Teor. Funkts., Funkts. Anal. Prilozh., Volume 42 (1984), pp. 72-91 translated in Sel. Math. Sov. 9 (1990), no. 1, p. 69–90 | MR | Zbl
[14] On the dynamics of rational maps, Ann. Sci. Éc. Norm. Supér. (4), Volume 16 (1983) no. 2, pp. 193-217 | DOI | Numdam | MR | Zbl
[15] Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math., Volume 13 (1971), pp. 1-89 | DOI | MR | Zbl
[16] Variation of the canonical height of a point depending on a parameter, Am. J. Math., Volume 105 (1983) no. 1, pp. 287-294 | DOI | MR | Zbl
[17] Adelic line bundles over quasi-projective varieties (2021) | arXiv
[18] Positive line bundles on arithmetic varieties, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 187-221 | DOI | MR | Zbl
[19] Distributions in algebraic dynamics, Surveys in differential geometry. Vol. X (Surveys in Differential Geometry), Volume 10, International Press, 2006, pp. 381-430 | DOI | Zbl
Cité par Sources :