Variation of canonical heights of subvarieties for polarized endomorphisms
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1123-1135.

When an endomorphism f:XX of a projective variety which is polarized by an ample line bundle L, i.e. such that f*LLd with d2, is defined over a number field, Call and Silverman defined a canonical height h^f for f. In a family (𝒳,f,) parametrized by a curve S together with a section P:S𝒳, they show that h^ft(P(t))/h(t) converges to the height h^fη(Pη) on the generic fiber.

In the present paper, we prove the equivalent statement when studying the variation of canonical heights of subvarieties Yt varying in a family 𝒴 of any relative dimension.

Pour un endomorphisme f:XX d’une variété projective qui est polarisé par un fibré en droites ample L, i.e. tel que f*LLd avec d2, et qui est défini sur un corps de nombres, Call et Silverman ont défini une fonction hauteur canonique h^f. Dans une famille (𝒳,f,) paramétrée par une courbe S munie d’une section P:S𝒳, ils prouvent également que h^ft(P(t))/h(t) converge vers la hauteur canonique h^fη(Pη) sur la fibre générique.

Dans cet article, nous étudions les variations en famille de la hauteur canonique de sous-variétés Yt et nous démontrons un énoncé équivalent en toute dimension relative.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1310
Classification : 37P45, 14G40, 37F46
Mots-clés : Canonical height, families of polarized endomorphisms, bifurcations

Thomas Gauthier 1 ; Gabriel Vigny 2

1 LMO, Université Paris-Saclay Bâtiment 307, rue Michel Magat 91405 Orsay Cedex, France
2 LAMFA, Université de Picardie Jules Verne 33 rue Saint-Leu 80039 Amiens Cedex 1, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_1123_0,
     author = {Thomas Gauthier and Gabriel Vigny},
     title = {Variation of canonical heights of subvarieties for polarized endomorphisms},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1123--1135},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     year = {2024},
     doi = {10.5802/jtnb.1310},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1310/}
}
TY  - JOUR
AU  - Thomas Gauthier
AU  - Gabriel Vigny
TI  - Variation of canonical heights of subvarieties for polarized endomorphisms
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 1123
EP  - 1135
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1310/
DO  - 10.5802/jtnb.1310
LA  - en
ID  - JTNB_2024__36_3_1123_0
ER  - 
%0 Journal Article
%A Thomas Gauthier
%A Gabriel Vigny
%T Variation of canonical heights of subvarieties for polarized endomorphisms
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 1123-1135
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1310/
%R 10.5802/jtnb.1310
%G en
%F JTNB_2024__36_3_1123_0
Thomas Gauthier; Gabriel Vigny. Variation of canonical heights of subvarieties for polarized endomorphisms. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1123-1135. doi : 10.5802/jtnb.1310. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1310/

[1] François Berteloot; Fabrizio Bianchi; Christophe Dupont Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of k, Ann. Sci. Éc. Norm. Supér. (4), Volume 51 (2018) no. 1, pp. 215-262 | DOI | MR | Zbl

[2] Sébastien Boucksom; Dennis Eriksson Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry, Adv. Math., Volume 378 (2021), 107501, 125 pages | MR | Zbl

[3] Gregory S. Call; Joseph H. Silverman Canonical heights on varieties with morphisms, Compos. Math., Volume 89 (1993) no. 2, pp. 163-205 | Numdam | MR | Zbl

[4] Antoine Chambert-Loir Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | MR | Zbl

[5] Pierre Deligne Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) (Contemporary Mathematics), Volume 67, American Mathematical Society, 1985, pp. 93-177 | DOI | MR

[6] Laura G. DeMarco Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett., Volume 8 (2001) no. 1-2, pp. 57-66 | DOI | MR | Zbl

[7] Charles Favre; Thomas Gauthier Continuity of the Green function in meromorphic families of polynomials, Algebra Number Theory, Volume 12 (2018) no. 6, pp. 1471-1487 | DOI | MR | Zbl

[8] Thomas Gauthier; Gabriel Vigny The Geometric Dynamical Northcott and Bogomolov Properties (2019) (to appear in Ann. Sci. Éc. Norm. Supér.) | arXiv

[9] Patrick Ingram Variation of the canonical height for a family of polynomials, J. Reine Angew. Math., Volume 685 (2013), pp. 73-97 | MR | Zbl

[10] Patrick Ingram Variation of the canonical height in a family of polarized dynamical systems (2021) | arXiv

[11] Patrick Ingram Explicit canonical heights for divisors relative to endomorphisms of n, Matematica, Volume 3 (2024) no. 4, pp. 1456-1485 | DOI | MR | Zbl

[12] Serge Lang Fundamentals of Diophantine geometry, Springer, 1983, xviii+370 pages | DOI | MR

[13] Mikhail Yu. Lyubich Investigation of the stability of the dynamics of rational functions, Teor. Funkts., Funkts. Anal. Prilozh., Volume 42 (1984), pp. 72-91 translated in Sel. Math. Sov. 9 (1990), no. 1, p. 69–90 | MR | Zbl

[14] Ricardo Mañé; Paolo Sad; Denis Sullivan On the dynamics of rational maps, Ann. Sci. Éc. Norm. Supér. (4), Volume 16 (1983) no. 2, pp. 193-217 | DOI | Numdam | MR | Zbl

[15] Michel Raynaud; Laurent Gruson Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math., Volume 13 (1971), pp. 1-89 | DOI | MR | Zbl

[16] John Tate Variation of the canonical height of a point depending on a parameter, Am. J. Math., Volume 105 (1983) no. 1, pp. 287-294 | DOI | MR | Zbl

[17] Xinyi Yuan; Shou-Wu Zhang Adelic line bundles over quasi-projective varieties (2021) | arXiv

[18] Shou-Wu Zhang Positive line bundles on arithmetic varieties, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 187-221 | DOI | MR | Zbl

[19] Shou-Wu Zhang Distributions in algebraic dynamics, Surveys in differential geometry. Vol. X (Surveys in Differential Geometry), Volume 10, International Press, 2006, pp. 381-430 | DOI | Zbl

Cité par Sources :