Computing the cohomology of constructible étale sheaves on curves
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1085-1122.

We present an explicit expression for the cohomology complex of a constructible sheaf of abelian groups on the small étale site of an irreducible curve over an algebraically closed field, when the torsion of the sheaf is invertible in the field. This expression only involves finite groups, and is functorial in both the curve and the sheaf. In particular, we explain how to compute the Galois action on this complex. We also present an algorithm which computes this complex and study its complexity. We illustrate this algorithm with several examples.

Nous présentons une expression explicite du complexe de cohomologie d’un faisceau constructible de groupes abéliens sur le site étale d’une courbe algébrique irréductible sur un corps algébriquement clos, dans le cas où la torsion du faisceau est inversible dans le corps. Cette expression fait intervenir uniquement des groupes finis, et est fonctorielle en la courbe et le faisceau. En particulier, nous montrons comment calculer l’action galoisienne sur ce complexe. Nous présentons également un algorithme qui calcule cette expression, et étudions sa complexité. Nous illustrons cet algorithme par plusieurs exemples.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1309
Classification : 14F20, 11G20, 11Y16
Mots-clés : étale cohomology, constructible sheaf, algebraic curve, algorithm, complexity

Christophe Levrat 1

1 INRIA Saclay 1 rue Honoré d’Estienne d’Orves 91120 Palaiseau, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_1085_0,
     author = {Christophe Levrat},
     title = {Computing the cohomology of constructible \'etale sheaves on curves},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1085--1122},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     year = {2024},
     doi = {10.5802/jtnb.1309},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1309/}
}
TY  - JOUR
AU  - Christophe Levrat
TI  - Computing the cohomology of constructible étale sheaves on curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 1085
EP  - 1122
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1309/
DO  - 10.5802/jtnb.1309
LA  - en
ID  - JTNB_2024__36_3_1085_0
ER  - 
%0 Journal Article
%A Christophe Levrat
%T Computing the cohomology of constructible étale sheaves on curves
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 1085-1122
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1309/
%R 10.5802/jtnb.1309
%G en
%F JTNB_2024__36_3_1085_0
Christophe Levrat. Computing the cohomology of constructible étale sheaves on curves. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1085-1122. doi : 10.5802/jtnb.1309. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1309/

[1] Jean-Marc Couveignes Linearizing torsion classes in the Picard group of algebraic curves over finite fields, J. Algebra, Volume 321 (2009) no. 8, pp. 2085-2118 | DOI | MR | Zbl

[2] Edward D. Davis On the geometric interpretation of seminormality, Proc. Am. Math. Soc., Volume 68 (1978) no. 1, pp. 1-5 | DOI | MR | Zbl

[3] Computational aspects of modular forms and Galois representations. How one can compute in polynomial time the value of Ramanujan’s tau at a prime (Bas Edixhoven; Jean-Marc Couveignes, eds.), Annals of Mathematics Studies, 176, Princeton University Press, 2011, xi+425 pages | DOI | Zbl

[4] Elie Eid Efficient computation of Cantor’s division polynomials of hyperelliptic curves over finite fields, J. Symb. Comput., Volume 117 (2023), pp. 68-100 | DOI | MR | Zbl

[5] Lei Fu Etale Cohomology Theory, Nankai Tracts in Mathematics, World Scientific, 2015 no. 14, ix+611 pages | MR

[6] David Harvey Counting points on hyperelliptic curves in average polynomial time, Ann. Math. (2), Volume 179 (2014) no. 2, pp. 783-803 | DOI | MR | Zbl

[7] Karl H. Hofmann; Sidney A. Morris The structure of compact groups. A primer for the student – a handbook for the expert, De Gruyter Studies in Mathematics, 25, Walter de Gruyter, 2020, xxvii+1006 pages | DOI | MR

[8] Ming-Deh Huang; Doug Ierardi Counting points on curves over finite fields, J. Symb. Comput., Volume 25 (1998) no. 1, pp. 1-21 | DOI | MR | Zbl

[9] Jinbi Jin Computation of étale cohomology on curves in single exponential time, J. Théor. Nombres Bordeaux, Volume 32 (2020) no. 2, pp. 311-354 (Accessed 2020-12-14) | DOI | Numdam | MR | Zbl

[10] Christophe Levrat Calcul effectif de la cohomologie des faisceaux constructibles sur le site étale d’une courbe, Ph. D. Thesis, Sorbonne Université (France) (2022)

[11] David A. Madore; Fabrice Orgogozo Calculabilité de la cohomologie étale modulo , Algebra Number Theory, Volume 9 (2015) no. 7, pp. 1647-1739 | DOI | MR | Zbl

[12] Nicolas Mascot Explicit computation of Galois representations occurring in families of curves (2023) | arXiv

[13] James Stuart Milne Étale Cohomology, Princeton Mathematical Series, Princeton University Press, 1980 no. 33, xiii+323 pages | MR

[14] James Stuart Milne Arithmetic Duality Theorems, BookSurge, 2006, viii+339 pages (First publ. by Academic Press, 1986) | MR

[15] Jürgen Neukirch Class Field Theory, Springer, 2013, x+184 pages | DOI | MR

[16] Bjorn Poonen; Damiano Testa; Ronald van Luijk Computing Néron–Severi groups and cycle class groups, Compos. Math., Volume 151 (2015) no. 4, pp. 713-734 | DOI | MR | Zbl

[17] The Stacks Project Authors Stacks Project, https://stacks.math.columbia.edu, 2018

[18] Charles A. Weibel An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1994 no. 38, xiv+450 pages | DOI | MR

[19] Yuri G. Zarhin Division by 2 on odd-degree hyperelliptic curves and their Jacobians, Izv. Math., Volume 83 (2019) no. 3, pp. 501-520 | DOI | Zbl

Cité par Sources :