We show that the only
Nous montrons que contrairement aux nombres
Révisé le :
Accepté le :
Publié le :
Mots-clés : Singular vectors, Approximation in function field
Shreyasi Datta 1 ; Yewei Xu 2

@article{JTNB_2024__36_3_1021_0, author = {Shreyasi Datta and Yewei Xu}, title = {Singular {Vectors} and $\psi ${-Dirichlet} {Numbers} over {Function} {Field}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1021--1038}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {3}, year = {2024}, doi = {10.5802/jtnb.1305}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1305/} }
TY - JOUR AU - Shreyasi Datta AU - Yewei Xu TI - Singular Vectors and $\psi $-Dirichlet Numbers over Function Field JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 1021 EP - 1038 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1305/ DO - 10.5802/jtnb.1305 LA - en ID - JTNB_2024__36_3_1021_0 ER -
%0 Journal Article %A Shreyasi Datta %A Yewei Xu %T Singular Vectors and $\psi $-Dirichlet Numbers over Function Field %J Journal de théorie des nombres de Bordeaux %D 2024 %P 1021-1038 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1305/ %R 10.5802/jtnb.1305 %G en %F JTNB_2024__36_3_1021_0
Shreyasi Datta; Yewei Xu. Singular Vectors and $\psi $-Dirichlet Numbers over Function Field. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1021-1038. doi : 10.5802/jtnb.1305. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1305/
[1] On the Littlewood conjecture in fields of power series, Probability and number theory—Kanazawa 2005 (Advanced Studies in Pure Mathematics), Volume 49, Mathematical Society of Japan, 2005, pp. 1-20 | MR | Zbl
[2] On the
[3] Quadratische Körper im Gebiete der höheren Kongruenzen. I, Math. Z., Volume 19 (1924), pp. 153-206 | DOI | MR | Zbl
[4] Mahler’s and Koksma’s classifications in fields of power series, Nagoya Math. J., Volume 246 (2022), pp. 355-371 | DOI | Zbl
[5] Semianalytic and subanalytic sets, Publ. Math., Inst. Hautes Étud. Sci., Volume 67 (1988), pp. 5-42 | DOI | Numdam | MR | Zbl
[6] Khintchine’s theorem for affine hyperplanes in positive charateristic, J. Number Theory, Volume 238 (2022), pp. 17-36 | DOI | MR | Zbl
[7] Dirichlet’s theorem in function fields, Can. J. Math., Volume 69 (2017) no. 3, pp. 532-547 | DOI | MR | Zbl
[8] Remarks on Diophantine approximation in function fields, Math. Scand., Volume 124 (2019) no. 1, pp. 5-14 | DOI | MR | Zbl
[9] Metric Diophantine approximation over a local field of positive characteristic, J. Number Theory, Volume 124 (2007) no. 2, pp. 454-469 | DOI | MR | Zbl
[10] An Introduction to the Theory of Local Zeta Functions, AMS/IP Studies in Advanced Mathematics, 14, American Mathematical Society, 2000, xii+232 pages | MR
[11] Über eine Klasse linearer diophantischer Approximationen, Rendiconti Palermo, Volume 50 (1926), pp. 170-195 | DOI | Zbl
[12] Metric inhomogeneous Diophantine approximation on the field of formal Laurent series, Acta Arith., Volume 150 (2011) no. 2, pp. 129-142 | MR | Zbl
[13] On hausdorff dimension in inhomogeneous diophantine approximation over global function fields, J. Number Theory, Volume 251 (2023), pp. 102-146 | MR | Zbl
[14] Singular vectors on manifolds and fractals, Isr. J. Math., Volume 245 (2021) no. 2, pp. 589-613 | DOI | MR | Zbl
[15]
[16] A measure estimate in geometry of numbers and improvements to Dirichlet’s theorem, Proc. Lond. Math. Soc. (3), Volume 125 (2022) no. 4, pp. 778-824 | DOI | MR | Zbl
[17] A zero-one law for improvements to Dirichlet’s theorem, Proc. Am. Math. Soc., Volume 146 (2018) no. 5, pp. 1833-1844 | DOI | MR | Zbl
[18] An inhomogeneous Dirichlet theorem via shrinking targets, Compos. Math., Volume 155 (2019) no. 7, pp. 1402-1423 | DOI | MR | Zbl
[19] On well-approximable matrices over a field of formal series, Math. Proc. Camb. Philos. Soc., Volume 135 (2003) no. 2, pp. 255-268 | DOI | MR | Zbl
[20] A survey of Diophantine approximation in fields of power series, Monatsh. Math., Volume 130 (2000) no. 3, pp. 211-229 | DOI | MR | Zbl
[21] An analogue to Minkowski’s geometry of numbers in a field of series, Ann. Math. (2), Volume 42 (1941), pp. 488-522 | DOI | MR | Zbl
[22] Continued fractions in function fields: polynomial analogues of McMullen’s and Zaremba’s conjectures (2017) | arXiv
[23] Parametric geometry of numbers in function fields, Mathematika, Volume 63 (2017) no. 3, pp. 1114-1135 | MR | Zbl
[24] On continued fractions and diophantine approximation in power series fields, Acta Arith., Volume 95 (2000) no. 2, pp. 139-166 | DOI | MR | Zbl
Cité par Sources :