Singular Vectors and ψ-Dirichlet Numbers over Function Field
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1021-1038.

We show that the only ψ-Dirichlet numbers in a function field over a finite field are rational functions, unlike ψ-Dirichlet numbers in . We also prove that there are uncountably many totally irrational singular vectors with large uniform exponent in quadratic surfaces over a positive characteristic field.

Nous montrons que contrairement aux nombres ψ-Dirichlet dans , les seuls nombres ψ-Dirichlet dans un corps de fonctions sur un corps fini sont les fonctions rationnelles. Nous prouvons également qu’il existe une quantité non dénombrable de vecteurs singuliers totalement irrationnels avec un grand exposant uniforme dans les surfaces quadratiques sur un corps de caractéristique positive.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1305
Classification : 11J13, 11J54, 37A44, 11N56, 14G42
Mots-clés : Singular vectors, Approximation in function field

Shreyasi Datta 1 ; Yewei Xu 2

1 Department of Mathematics, Heslington, York YO10 5DD University of York United Kingdom
2 Department of Mathematics, University of Wisconsin-Madison 716 Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706 United States of America
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_1021_0,
     author = {Shreyasi Datta and Yewei Xu},
     title = {Singular {Vectors} and $\psi ${-Dirichlet} {Numbers} over {Function} {Field}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1021--1038},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     year = {2024},
     doi = {10.5802/jtnb.1305},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1305/}
}
TY  - JOUR
AU  - Shreyasi Datta
AU  - Yewei Xu
TI  - Singular Vectors and $\psi $-Dirichlet Numbers over Function Field
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 1021
EP  - 1038
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1305/
DO  - 10.5802/jtnb.1305
LA  - en
ID  - JTNB_2024__36_3_1021_0
ER  - 
%0 Journal Article
%A Shreyasi Datta
%A Yewei Xu
%T Singular Vectors and $\psi $-Dirichlet Numbers over Function Field
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 1021-1038
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1305/
%R 10.5802/jtnb.1305
%G en
%F JTNB_2024__36_3_1021_0
Shreyasi Datta; Yewei Xu. Singular Vectors and $\psi $-Dirichlet Numbers over Function Field. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1021-1038. doi : 10.5802/jtnb.1305. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1305/

[1] Boris Adamczewski; Yann Bugeaud On the Littlewood conjecture in fields of power series, Probability and number theory—Kanazawa 2005 (Advanced Studies in Pure Mathematics), Volume 49, Mathematical Society of Japan, 2005, pp. 1-20 | MR | Zbl

[2] Faustin Adiceam; Erez Nesharim; Fred Lunnon On the t-adic Littlewood conjecture, Duke Math. J., Volume 170 (2021) no. 10, pp. 2371-2419 | MR | Zbl

[3] Emil Artin Quadratische Körper im Gebiete der höheren Kongruenzen. I, Math. Z., Volume 19 (1924), pp. 153-206 | DOI | MR | Zbl

[4] Jason Bell; Yann Bugeaud Mahler’s and Koksma’s classifications in fields of power series, Nagoya Math. J., Volume 246 (2022), pp. 355-371 | DOI | Zbl

[5] Edward Bierstone; Pierre D. Milman Semianalytic and subanalytic sets, Publ. Math., Inst. Hautes Étud. Sci., Volume 67 (1988), pp. 5-42 | DOI | Numdam | MR | Zbl

[6] Arijit Ganguly Khintchine’s theorem for affine hyperplanes in positive charateristic, J. Number Theory, Volume 238 (2022), pp. 17-36 | DOI | MR | Zbl

[7] Arijit Ganguly; Anish Ghosh Dirichlet’s theorem in function fields, Can. J. Math., Volume 69 (2017) no. 3, pp. 532-547 | DOI | MR | Zbl

[8] Arijit Ganguly; Anish Ghosh Remarks on Diophantine approximation in function fields, Math. Scand., Volume 124 (2019) no. 1, pp. 5-14 | DOI | MR | Zbl

[9] Anish Ghosh Metric Diophantine approximation over a local field of positive characteristic, J. Number Theory, Volume 124 (2007) no. 2, pp. 454-469 | DOI | MR | Zbl

[10] Jun-ichi Igusa An Introduction to the Theory of Local Zeta Functions, AMS/IP Studies in Advanced Mathematics, 14, American Mathematical Society, 2000, xii+232 pages | MR

[11] Aleksandr Khintchin Über eine Klasse linearer diophantischer Approximationen, Rendiconti Palermo, Volume 50 (1926), pp. 170-195 | DOI | Zbl

[12] Dong Han Kim; Hitoshi Nakada Metric inhomogeneous Diophantine approximation on the field of formal Laurent series, Acta Arith., Volume 150 (2011) no. 2, pp. 129-142 | MR | Zbl

[13] Taehyeong Kim; Seonhee Lim; Frédéric Paulin On hausdorff dimension in inhomogeneous diophantine approximation over global function fields, J. Number Theory, Volume 251 (2023), pp. 102-146 | MR | Zbl

[14] Dmitry Kleinbock; Nikolay Moshchevitin; Barak Weiss Singular vectors on manifolds and fractals, Isr. J. Math., Volume 245 (2021) no. 2, pp. 589-613 | DOI | MR | Zbl

[15] Dmitry Kleinbock; Ronggang Shi; George Tomanov S-adic version of Minkowski’s geometry of numbers and Mahler’s compactness criterion, J. Number Theory, Volume 174 (2017), pp. 150-163 | DOI | Zbl

[16] Dmitry Kleinbock; Andreas Strömbergsson; Shucheng Yu A measure estimate in geometry of numbers and improvements to Dirichlet’s theorem, Proc. Lond. Math. Soc. (3), Volume 125 (2022) no. 4, pp. 778-824 | DOI | MR | Zbl

[17] Dmitry Kleinbock; Nick Wadleigh A zero-one law for improvements to Dirichlet’s theorem, Proc. Am. Math. Soc., Volume 146 (2018) no. 5, pp. 1833-1844 | DOI | MR | Zbl

[18] Dmitry Kleinbock; Nick Wadleigh An inhomogeneous Dirichlet theorem via shrinking targets, Compos. Math., Volume 155 (2019) no. 7, pp. 1402-1423 | DOI | MR | Zbl

[19] Simon Kristensen On well-approximable matrices over a field of formal series, Math. Proc. Camb. Philos. Soc., Volume 135 (2003) no. 2, pp. 255-268 | DOI | MR | Zbl

[20] Alain Lasjaunias A survey of Diophantine approximation in fields of power series, Monatsh. Math., Volume 130 (2000) no. 3, pp. 211-229 | DOI | MR | Zbl

[21] Kurt Mahler An analogue to Minkowski’s geometry of numbers in a field of series, Ann. Math. (2), Volume 42 (1941), pp. 488-522 | DOI | MR | Zbl

[22] Francesca Malagoli Continued fractions in function fields: polynomial analogues of McMullen’s and Zaremba’s conjectures (2017) | arXiv

[23] Damien Roy; Michel Waldschmidt Parametric geometry of numbers in function fields, Mathematika, Volume 63 (2017) no. 3, pp. 1114-1135 | MR | Zbl

[24] Wolfgang M. Schmidt On continued fractions and diophantine approximation in power series fields, Acta Arith., Volume 95 (2000) no. 2, pp. 139-166 | DOI | MR | Zbl

Cité par Sources :