Some Obstructions to Solvable Points on Higher Genus Curves
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1009-1019.

It is known that for a curve defined over of genus g4, there exists a point on the curve defined over a solvable extension of . We relate points on curves of genus g5 over solvable extensions to the Bombieri–Lang conjecture. Specifically, we show that varieties parametrising points defined over extensions with a fixed solvable Galois group are of general type. Moreover, we show the existence of certain subvarieties in these varieties imply the existence of solvable morphisms from the curve.

On sait que toute courbe algébrique sur de genre g4 admet un point défini sur une extension résoluble de . Nous établissons un lien entre les points des courbes de genre g5 définis sur les extensions résolubles et la conjecture de Bombieri–Lang. Plus précisément, nous montrons que les variétés paramétrant les points définis sur les extensions de groupe de Galois résoluble fixé sont de type général. En outre, nous montrons que l’existence de certaines sous-variétés de ces variétés implique l’existence de morphismes résolubles définies sur la courbe.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1304
Classification : 11G30, 11G35, 14G05
Mots-clés : Higher genus curves, solvable points, quotient varieties, rational points, solvable morphisms

James Rawson 1

1 Mathematics Institute, University of Warwick, Coventry United Kingdom
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_1009_0,
     author = {James Rawson},
     title = {Some {Obstructions} to {Solvable} {Points} on {Higher} {Genus} {Curves}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1009--1019},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     year = {2024},
     doi = {10.5802/jtnb.1304},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1304/}
}
TY  - JOUR
AU  - James Rawson
TI  - Some Obstructions to Solvable Points on Higher Genus Curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 1009
EP  - 1019
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1304/
DO  - 10.5802/jtnb.1304
LA  - en
ID  - JTNB_2024__36_3_1009_0
ER  - 
%0 Journal Article
%A James Rawson
%T Some Obstructions to Solvable Points on Higher Genus Curves
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 1009-1019
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1304/
%R 10.5802/jtnb.1304
%G en
%F JTNB_2024__36_3_1009_0
James Rawson. Some Obstructions to Solvable Points on Higher Genus Curves. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1009-1019. doi : 10.5802/jtnb.1304. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1304/

[1] Donu Arapura; Sviatoslav Archava Kodaira dimension of symmetric powers, Proc. Am. Math. Soc., Volume 131 (2003) no. 5, pp. 1369-1372 | DOI | MR | Zbl

[2] Olivier Benoist Kodaira dimension of symmetric products of curves, MathOverflow, 2013 https://mathoverflow.net/q/123980 (version: 2013-03-08)

[3] Allan Clark Elements of Abstract Algebra, Dover Books on Mathematics Series, Dover Publications, 1984, xiv+324 pages

[4] Olivier Debarre Curves and Divisors on Algebraic Varieties, Springer (2001), pp. 1-36 | DOI

[5] Serge Lang Hyperbolic and Diophantine analysis, Bull. Am. Math. Soc., Volume 14 (1986) no. 2, pp. 159-205 | DOI | MR | Zbl

[6] Andrew P. Ogg Über die Automorphismengruppe von X0(N)., Math. Ann., Volume 228 (1977), pp. 279-292 http://eudml.org/doc/162996 | MR | Zbl

[7] Ekin Ozman; Samir Siksek Quadratic points on modular curves, Math. Comput., Volume 88 (2018), pp. 2461-2484 http://wrap.warwick.ac.uk/109403/ | DOI | MR | Zbl

[8] Ambrus Pál Solvable Points on Projective Algebraic Curves, Can. J. Math., Volume 56 (2004) no. 3, pp. 612-637 | DOI | MR | Zbl

[9] Jean-Pierre Serre Hilbert’s Irreducibility Theorem, Jones and Bartlett Publishers (1992), pp. 19-34

[10] Kenji Ueno Classification of algebraic varieties, I, Compos. Math., Volume 27 (1973) no. 3, pp. 277-342 | Numdam | MR | Zbl

[11] Andrew Wiles; Mirela Çiperiani Solvable points on genus one curves, Duke Math. J., Volume 142 (2008) no. 3, pp. 381-464 | DOI | MR | Zbl

[12] Oscar Zariski Sull’impossibilità di risolvere parametricamente per radicali un’equazione algebrica f(x,y)=0 di genere p>6 a moduli generali, Rendiconti Accad. d. L. Roma (6), Volume 3 (1926), pp. 660-666 | Zbl

Cité par Sources :