Soit
en nombres entiers
est borné par
en entiers
ne dépasse pas
Let
in integers
does not exceed
in integers
does not exceed
Révisé le :
Accepté le :
Publié le :
Mots-clés : Thue equation, Thue–Mahler equation, Diophantine approximation, binary form
Anton Mosunov 1

@article{JTNB_2024__36_3_947_0, author = {Anton Mosunov}, title = {Absolute {Bound} {On} the {Number} of {Solutions} of {Certain} {Diophantine} {Equations} of {Thue} and {Thue{\textendash}Mahler} {Type}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {947--965}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {3}, year = {2024}, doi = {10.5802/jtnb.1301}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1301/} }
TY - JOUR AU - Anton Mosunov TI - Absolute Bound On the Number of Solutions of Certain Diophantine Equations of Thue and Thue–Mahler Type JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 947 EP - 965 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1301/ DO - 10.5802/jtnb.1301 LA - en ID - JTNB_2024__36_3_947_0 ER -
%0 Journal Article %A Anton Mosunov %T Absolute Bound On the Number of Solutions of Certain Diophantine Equations of Thue and Thue–Mahler Type %J Journal de théorie des nombres de Bordeaux %D 2024 %P 947-965 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1301/ %R 10.5802/jtnb.1301 %G en %F JTNB_2024__36_3_947_0
Anton Mosunov. Absolute Bound On the Number of Solutions of Certain Diophantine Equations of Thue and Thue–Mahler Type. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 947-965. doi : 10.5802/jtnb.1301. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1301/
[1] On the Thue–Siegel–Dyson theorem, Acta Math., Volume 148 (1982), pp. 255-296 | DOI | Zbl
[2] On effective measures of irrationality for
[3] On Thue’s equation, Invent. Math., Volume 88 (1987), pp. 69-81 | DOI | Zbl
[4] The approximation of algebraic numbers by rationals, Acta Math., Volume 79 (1947), pp. 225-240 | DOI | MR | Zbl
[5] On the number of integers which can be represented by a binary form, J. Lond. Math. Soc., Volume 13 (1938), pp. 134-139 | DOI | MR | Zbl
[6] Some Diophantine equations with many solutions, Compos. Math., Volume 66 (1988) no. 1, pp. 37-56 | MR | Zbl
[7] On equations in
[8] Sur la représentation des entiers par les formes cyclotomiques de grand degré, Bull. Soc. Math. Fr., Volume 148 (2020) no. 2, pp. 253-282 | DOI | MR | Zbl
[9] Representation of integers by binary forms, Acta Arith., Volume 6 (1961), pp. 333-363 | DOI | Zbl
[10] Zur Approximation algebraischer Zahlen. II. Über die Anzahl der Darstellungen ganzer Zahlen durch Binärformen, Math. Ann., Volume 108 (1933), pp. 37-55 | DOI | Zbl
[11] On the automorphism group of a binary form associated with algebraic grigonometric quantities, J. Number Theory, Volume 240 (2022), pp. 325-356 | DOI | MR | Zbl
[12] On the generalization of the gap principle, Period. Math. Hung., Volume 87 (2023) no. 1, pp. 119-151 | DOI | MR | Zbl
[13] Rational approximations to algebraic numbers, Mathematika, Volume 2 (1955) no. 3, pp. 1-20 | DOI | MR | Zbl
[14] Approximation algebraischer Zahlen, Math. Z., Volume 10 (1921), pp. 173-213 | DOI | MR | Zbl
[15] On the number of solutions of polynomial congruences and Thue equations, J. Am. Math. Soc., Volume 4 (1991), pp. 793-835 | DOI | MR | Zbl
[16] Cubic Thue equations with many solutions, Int. Math. Res. Not., Volume 2008 (2008), rnn040, 11 pages | MR | Zbl
[17] Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math., Volume 135 (1909), pp. 284-305 | DOI | MR | Zbl
[18] Thue equations and lattices, Ill. J. Math., Volume 59 (2015) no. 4, pp. 999-1023 | MR | Zbl
Cité par Sources :