On higher regulators of Siegel varieties
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 767-804.

Inspired by Beilinson conjectures, we provide a construction of classes in the middle degree plus one motivic cohomology of the Siegel Shimura variety of almost any dimension. We compute their image by Beilinson’s higher regulator in terms of Rankin–Selberg type automorphic integrals. Our construction generalizes the one for GSp(4) in [21] and for GSp(6) in [4]. For Siegel varieties associated to small genus symplectic groups, we also show how these integrals unfold.

Inspirés par les conjectures de Beilinson, nous construisons des classes en degré moitié plus un dans la cohomologie motivique des variétés modulaires de Siegel de presque toute dimension. Nous calculons leur image par le régulateur supérieur de Beilinson en termes d’intégrales adéliques de type Rankin–Selberg. Notre construction généralise celle pour GSp(4) de [21] et celle pour GSp(6) de [4]. Dans le cas de variétés de Siegel associées à des groupes symplectiques de petit genre, nous démontrons également que ces intégrales se déploient.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1295
Classification : 11G18, 11G16, 11G40, 11F46, 11F67, 19F27
Mots-clés : Siegel Shimura varieties, Beilinson conjectures, Rankin–Selberg integrals

Antonio Cauchi 1 ; Francesco Lemma 2 ; Joaquín Rodrigues Jacinto 3

1 University College Dublin, School of Mathematics and Statistics Science Centre - South Belfield Dublin 4, Dublin Ireland
2 Université Paris Cité, CNRS, IMJ–PRG bâtiment Sophie Germain, case 7012 75205 Paris Cedex 13 France
3 Aix–Marseille Université, CNRS, Centrale Marseille, I2M. Campus de Luminy, Avenue de Luminy, Case 930 13288 Marseille Cedex 9 France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_767_0,
     author = {Antonio Cauchi and Francesco Lemma and Joaqu{\'\i}n Rodrigues Jacinto},
     title = {On higher regulators of {Siegel} varieties},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {767--804},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     year = {2024},
     doi = {10.5802/jtnb.1295},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1295/}
}
TY  - JOUR
AU  - Antonio Cauchi
AU  - Francesco Lemma
AU  - Joaquín Rodrigues Jacinto
TI  - On higher regulators of Siegel varieties
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 767
EP  - 804
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1295/
DO  - 10.5802/jtnb.1295
LA  - en
ID  - JTNB_2024__36_3_767_0
ER  - 
%0 Journal Article
%A Antonio Cauchi
%A Francesco Lemma
%A Joaquín Rodrigues Jacinto
%T On higher regulators of Siegel varieties
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 767-804
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1295/
%R 10.5802/jtnb.1295
%G en
%F JTNB_2024__36_3_767_0
Antonio Cauchi; Francesco Lemma; Joaquín Rodrigues Jacinto. On higher regulators of Siegel varieties. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 767-804. doi : 10.5802/jtnb.1295. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1295/

[1] Armand Borel Stable real cohomology of arithmetic groups II, Manifolds and Lie Groups: Papers in Honor of Yozo Matsushima (Progress in Mathematics), Volume 14, Birkhäuser (1980), pp. 21-55

[2] Armand Borel; Nolan R. Wallach Continuous cohomology, discrete subgroups, and representations of reductive groups, Mathematical Surveys and Monographs, 67, American Mathematical Society, 2013 | MR

[3] José Ignacio Burgos A C logarithmic Dolbeault complex, Compos. Math., Volume 92 (1994) no. 1, pp. 61-86 | Numdam | MR | Zbl

[4] José Ignacio Burgos Gil; Antonio Cauchi; Francesco Lemma; Joaquín Rodrigues Jacinto Tempered currents and Deligne cohomology of Shimura varieties, with an application to GSp6, Camb. J. Math., Volume 12 (2024) no. 4, pp. 831-902 | DOI | MR | Zbl

[5] José Ignacio Burgos Gil; Jürg Kramer; Ulf Kühn Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu, Volume 6 (2007) no. 1, pp. 1-172 | MR | Zbl

[6] Antonio Cauchi; Francesco Lemma; Joaquín Rodrigues Jacinto Algebraic cycles and functorial lifts from G2 to PGSp6 (to appear in Algebra Number Theory) | arXiv

[7] Antonio Cauchi; Joaquín Rodrigues Jacinto Norm-compatible systems of Galois cohomology classes for GSp6, Doc. Math., Volume 25 (2020), pp. 911-954 | DOI | MR | Zbl

[8] David H. Collingwood; William M. McGovern Nilpotent orbits in semisimple Lie algebra: an introduction, CRC Press, 1993 | MR

[9] Pierre Deligne Théorie de Hodge II, Publ. Math., Inst. Hautes Étud. Sci., Volume 40 (1971), pp. 5-57 | DOI | Numdam | MR | Zbl

[10] Christopher Deninger; Anthony J. Scholl The Beĭlinson conjectures, L-functions and arithmetic (Durham, 1989) (London Mathematical Society Lecture Note Series), Volume 153, Cambridge University Press, 1991, pp. 173-209 | DOI | MR | Zbl

[11] Hélène Esnault; Eckart Viehweg Deligne–Beilinson Cohomology, Beilinson’s conjectures on special values of L-functions (Michael Rapoport; Peter Schneider; Norbert Schappacher, eds.) (Perspectives in Mathematics), Volume 4, Academic Press Inc. (1988), pp. 43-91 | DOI | Zbl

[12] David Ginzburg Towards a classification of global integral constructions and functorial liftings using the small representations method, Adv. Math., Volume 254 (2014), pp. 157-186 | DOI | MR | Zbl

[13] David Ginzburg; Stephen Rallis; David Soudry On Fourier coefficients of automorphic forms of symplectic groups, Manuscr. Math., Volume 111 (2003) no. 1, pp. 1-16 | DOI | MR

[14] David Ginzburg; David Soudry; Stephen Rallis The descent map from automorphic representations of GL(n) to classical groups, World Scientific, 2011 | DOI | MR

[15] Michael Harris Functorial properties of toroidal compactifications of locally symmetric varieties, Proc. Lond. Math. Soc. (3), Volume 59 (1989) no. 1, pp. 1-22 | DOI | MR | Zbl

[16] Michael Harris L-functions and periods of polarized regular motives, J. Reine Angew. Math., Volume 483 (1997), pp. 75-161 | MR | Zbl

[17] Uwe Jannsen Deligne homology, Hodge-D-conjecture, and motives, Beilinson’s conjectures on special values of L-functions (Michael Rapoport; Peter Schneider; Norbert Schappacher, eds.) (Perspectives in Mathematics), Volume 4, Academic Press Inc. (1988), pp. 305-372 | DOI | Zbl

[18] Kazuya Kato p-adic Hodge theory and values of zeta functions of modular forms, p-adic cohomology and arithmetic applications (III). (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | MR | Zbl

[19] Anthony W. Knapp Representation theory of semisimple groups: an overview based on examples, Princeton Mathematical Series, 36, Princeton University Press, 2001 | MR

[20] Arno Kret; Sug Woo Shin Galois representations for general symplectic groups, J. Eur. Math. Soc., Volume 25 (2023) no. 1, pp. 75-152 | DOI | MR | Zbl

[21] Francesco Lemma On higher regulators of Siegel threefolds II: the connection to the special value, Compos. Math., Volume 153 (2017) no. 5, pp. 889-946 | DOI | MR | Zbl

[22] David Loeffler; Christopher Skinner; Sarah Zerbes Euler systems for GSp(4), J. Eur. Math. Soc., Volume 24 (2022) no. 2, pp. 669-733 | DOI | MR | Zbl

[23] Aaron Pollack; Shrenik Shah A class number formula for Picard modular surfaces (2017) | arXiv

[24] Aaron Pollack; Shrenik Shah The spin L-function on GSp6 via a non-unique model, Am. J. Math., Volume 140 (2018) no. 3, pp. 753-788 | DOI | MR | Zbl

[25] Bruce Reznick The sum of the squares of the parts of a partition, and some related questions, J. Number Theory, Volume 33 (1989) no. 2, pp. 199-208 | DOI | MR | Zbl

Cité par Sources :