Computing Euclidean Belyi maps
Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 2, pp. 543-565.

We exhibit an explicit algorithm to compute three-point branched covers of the complex projective line when the uniformizing triangle group is Euclidean.

Nous exposons un algorithme explicite pour calculer les revêtements ramifiés en trois points de la droite projective complexe lorsque le groupe de triangles uniformisant est euclidien.

Received:
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/jtnb.1256
Classification: 11G32, 11Y40
Keywords: Belyi maps, elliptic curves
Matthew Radosevich 1; John Voight 1

1 Department of Mathematics Dartmouth College 6188 Kemeny Hall Hanover, NH 03755, USA
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2023__35_2_543_0,
     author = {Matthew Radosevich and John Voight},
     title = {Computing {Euclidean} {Belyi} maps},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {543--565},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {2},
     year = {2023},
     doi = {10.5802/jtnb.1256},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1256/}
}
TY  - JOUR
AU  - Matthew Radosevich
AU  - John Voight
TI  - Computing Euclidean Belyi maps
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 543
EP  - 565
VL  - 35
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1256/
DO  - 10.5802/jtnb.1256
LA  - en
ID  - JTNB_2023__35_2_543_0
ER  - 
%0 Journal Article
%A Matthew Radosevich
%A John Voight
%T Computing Euclidean Belyi maps
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 543-565
%V 35
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1256/
%R 10.5802/jtnb.1256
%G en
%F JTNB_2023__35_2_543_0
Matthew Radosevich; John Voight. Computing Euclidean Belyi maps. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 2, pp. 543-565. doi : 10.5802/jtnb.1256. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1256/

[1] Dominik Barth; Andreas Wenz Computation of Belyi maps with prescribed ramification and applications in Galois theory, J. Algebra, Volume 569 (2021), pp. 616-642 | DOI | MR | Zbl

[2] Gennadii V. Belyĭ Galois extensions of a maximal cyclotomic field, Math. USSR, Izv., Volume 14 (1980) no. 2, pp. 247-256 | DOI | MR | Zbl

[3] Gennadii V. Belyĭ A new proof of the three-point theorem, Sb. Math., Volume 193 (2002) no. 3-4, pp. 329-332 | DOI

[4] Wieb Bosma; John Cannon; Catherine Playoust The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl

[5] Alexandre Grothendieck Sketch of a programme (translation into English), Geometric Galois Actions. 1. Around Grothendieck’s Esquisse d’un Programme (Leila Schneps; Pierre Lochak, eds.) (London Mathematical Society Lecture Note Series), Volume 242, Cambridge University Press, 1997, pp. 243-283 | DOI

[6] Michael Klug; Michael Musty; Sam Schiavone; John Voight Numerical calculation of three-point covers of the projective line, LMS J. Comput. Math., Volume 17 (2014) no. 1, pp. 379-430 | DOI | MR | Zbl

[7] The LMFDB Collaboration The L-functions and Modular Forms Database (http://www.lmfdb.org, accessed 27 May 2020)

[8] Wilhelm Magnus Noneuclidean tesselations and their groups, Pure and Applied Mathematics, 61, Academic Press Inc., 1974

[9] Hartmut Monien The sporadic group J2, Hauptmodul and Belyi map (2017) (https://arxiv.org/abs/1703.05200)

[10] Hartmut Monien The sporadic group Co 3 , Hauptmodul and Belyi map (2018) (https://arxiv.org/abs/1802.06923)

[11] Michael Musty; Sam Schiavone; Jeroen Sijsling; John Voight A database of Belyi maps, Proceedings of the Thirteenth Algorithmic Number Theory Symposium (ANTS-XIII) (Renate Scheidler; Jonathan Sorenson, eds.) (The Open Book Series), Volume 2, Mathematical Sciences Publishers, pp. 375-392 | Zbl

[12] Jeroen Sijsling; John Voight On computing Belyi maps, Publ. Math. Besançon, Algèbre Théorie Nombres, Volume 2014 (2014) no. 1, pp. 73-131 | Numdam | MR | Zbl

[13] Joseph Silverman Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994 | DOI

[14] Joseph Silverman The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009 | DOI

[15] Jacques Vélu Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris, Volume 273 (1971), pp. 238-241 | Zbl

Cited by Sources: