We exhibit an explicit algorithm to compute three-point branched covers of the complex projective line when the uniformizing triangle group is Euclidean.
Nous exposons un algorithme explicite pour calculer les revêtements ramifiés en trois points de la droite projective complexe lorsque le groupe de triangles uniformisant est euclidien.
Accepted:
Revised after acceptance:
Published online:
Keywords: Belyi maps, elliptic curves
@article{JTNB_2023__35_2_543_0, author = {Matthew Radosevich and John Voight}, title = {Computing {Euclidean} {Belyi} maps}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {543--565}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {2}, year = {2023}, doi = {10.5802/jtnb.1256}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1256/} }
TY - JOUR AU - Matthew Radosevich AU - John Voight TI - Computing Euclidean Belyi maps JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 543 EP - 565 VL - 35 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1256/ DO - 10.5802/jtnb.1256 LA - en ID - JTNB_2023__35_2_543_0 ER -
%0 Journal Article %A Matthew Radosevich %A John Voight %T Computing Euclidean Belyi maps %J Journal de théorie des nombres de Bordeaux %D 2023 %P 543-565 %V 35 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1256/ %R 10.5802/jtnb.1256 %G en %F JTNB_2023__35_2_543_0
Matthew Radosevich; John Voight. Computing Euclidean Belyi maps. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 2, pp. 543-565. doi : 10.5802/jtnb.1256. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1256/
[1] Computation of Belyi maps with prescribed ramification and applications in Galois theory, J. Algebra, Volume 569 (2021), pp. 616-642 | DOI | MR | Zbl
[2] Galois extensions of a maximal cyclotomic field, Math. USSR, Izv., Volume 14 (1980) no. 2, pp. 247-256 | DOI | MR | Zbl
[3] A new proof of the three-point theorem, Sb. Math., Volume 193 (2002) no. 3-4, pp. 329-332 | DOI
[4] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[5] Sketch of a programme (translation into English), Geometric Galois Actions. 1. Around Grothendieck’s Esquisse d’un Programme (Leila Schneps; Pierre Lochak, eds.) (London Mathematical Society Lecture Note Series), Volume 242, Cambridge University Press, 1997, pp. 243-283 | DOI
[6] Numerical calculation of three-point covers of the projective line, LMS J. Comput. Math., Volume 17 (2014) no. 1, pp. 379-430 | DOI | MR | Zbl
[7] The L-functions and Modular Forms Database (http://www.lmfdb.org, accessed 27 May 2020)
[8] Noneuclidean tesselations and their groups, Pure and Applied Mathematics, 61, Academic Press Inc., 1974
[9] The sporadic group , Hauptmodul and Belyi map (2017) (https://arxiv.org/abs/1703.05200)
[10] The sporadic group , Hauptmodul and Belyi map (2018) (https://arxiv.org/abs/1802.06923)
[11] A database of Belyi maps, Proceedings of the Thirteenth Algorithmic Number Theory Symposium (ANTS-XIII) (Renate Scheidler; Jonathan Sorenson, eds.) (The Open Book Series), Volume 2, Mathematical Sciences Publishers, pp. 375-392 | Zbl
[12] On computing Belyi maps, Publ. Math. Besançon, Algèbre Théorie Nombres, Volume 2014 (2014) no. 1, pp. 73-131 | Numdam | MR | Zbl
[13] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994 | DOI
[14] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009 | DOI
[15] Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris, Volume 273 (1971), pp. 238-241 | Zbl
Cited by Sources: