Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers
Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 917-939.

In this article, we introduce combinatorial models for poly-Bernoulli polynomials and poly-Euler numbers of both kinds. As their applications, we provide combinatorial proofs of some identities involving poly-Bernoulli polynomials.

Dans cet article, nous introduisons des modèles combinatoires pour les analogues en plusieurs variables des polynômes de Bernoulli et des nombres d’Euler de deux types. Comme application, nous donnons des preuves combinatoires de certaines identités faisant intervenir les polynômes de Bernoulli généralisés.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1234
Classification: 05A05, 05A19, 11B68
Keywords: Poly-Bernoulli polynomial, poly-Euler number
Beáta Bényi 1; Toshiki Matsusaka 2

1 Faculty of Water Sciences, University of Public Service, Baja, Hungary
2 Faculty of Mathematics, Kyushu University Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2022__34_3_917_0,
     author = {Be\'ata B\'enyi and Toshiki Matsusaka},
     title = {Combinatorial aspects of {poly-Bernoulli} polynomials and {poly-Euler} numbers},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {917--939},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {34},
     number = {3},
     year = {2022},
     doi = {10.5802/jtnb.1234},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1234/}
}
TY  - JOUR
AU  - Beáta Bényi
AU  - Toshiki Matsusaka
TI  - Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2022
SP  - 917
EP  - 939
VL  - 34
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1234/
DO  - 10.5802/jtnb.1234
LA  - en
ID  - JTNB_2022__34_3_917_0
ER  - 
%0 Journal Article
%A Beáta Bényi
%A Toshiki Matsusaka
%T Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers
%J Journal de théorie des nombres de Bordeaux
%D 2022
%P 917-939
%V 34
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1234/
%R 10.5802/jtnb.1234
%G en
%F JTNB_2022__34_3_917_0
Beáta Bényi; Toshiki Matsusaka. Combinatorial aspects of poly-Bernoulli polynomials and poly-Euler numbers. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 917-939. doi : 10.5802/jtnb.1234. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1234/

[1] Tsuneo Arakawa; Masanobou Kaneko Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J., Volume 153 (1999), pp. 189-209 | DOI | MR | Zbl

[2] Abdelmejid Bayad; Yoshinori Hamahata Polylogarithms and poly-Bernoulli polynomials, Kyushu J. Math., Volume 65 (2011) no. 1, pp. 15-24 | DOI | MR | Zbl

[3] Beáta Bényi; Péter Hajnal Combinatorial properties of poly-Bernoulli relatives, Integers, Volume 17 (2017), A31, 26 pages | MR | Zbl

[4] Beáta Bényi; Toshiki Matsusaka On the combinatorics of symmetrized poly-Bernoulli numbers, Electron. J. Comb., Volume 28 (2021) no. 1, 1.47, 20 pages | DOI | MR | Zbl

[5] Chad Brewbaker A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues, Integers, Volume 8 (2008), A02, 9 pages | MR | Zbl

[6] Andrei Z. Broder The r-Stirling numbers, Discrete Math., Volume 49 (1984) no. 3, pp. 241-259 | DOI | MR | Zbl

[7] Leonard Carlitz Weighted Stirling numbers of the first and second kind. I, Fibonacci Q., Volume 18 (1980) no. 2, pp. 147-162 | MR | Zbl

[8] Leonard Carlitz Weighted Stirling numbers of the first and second kind. II, Fibonacci Q., Volume 18 (1980) no. 3, pp. 242-257 | MR | Zbl

[9] Marc-Antoine Coppo; Bernard Candelpergher The Arakawa-Kaneko zeta function, Ramanujan J., Volume 22 (2010) no. 2, pp. 153-162 | DOI | MR | Zbl

[10] Serkan Hoşten; Seth Sullivant The algebraic complexity of maximum likelihood estimation for bivariate missing data, Algebraic and geometric methods in statistics, Cambridge University Press, 2010, pp. 123-133 | MR

[11] Masanobou Kaneko Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux, Volume 9 (1997) no. 1, pp. 221-228 | DOI | Numdam | MR | Zbl

[12] Levent Kargın; Mehmet Cenkci; Ayhan Dil; Mümün Can Generalized harmonic numbers via poly-Bernoulli polynomials (2021) (https://arxiv.org/abs/2008.00284v2)

[13] Donald E. Knuth Johann Faulhaber and sums of powers, Math. Comput., Volume 61 (1993) no. 203, pp. 277-294 | DOI | MR | Zbl

[14] Takao Komatsu Complementary Euler numbers, Period. Math. Hung., Volume 75 (2017) no. 2, pp. 302-314 | DOI | MR | Zbl

[15] Takao Komatsu On poly-Euler numbers of the second kind, Algebraic number theory and related topics 2016 (RIMS Kôkyûroku Bessatsu), Volume B77, Research Institute for Mathematical Sciences, 2020, pp. 143-158 | Zbl

[16] Takao Komatsu; Florian Luca Some relationships between poly-Cauchy numbers and poly-Bernoulli numbers, Ann. Math. Inform., Volume 41 (2013), pp. 99-105 | MR | Zbl

[17] Takao Komatsu; Huilin Zhu Hypergeometric Euler numbers, AIMS Math., Volume 5 (2020) no. 2, pp. 1284-1303 | DOI | MR | Zbl

[18] Stamatis Koumandos; Henrik Laurberg Pedersen Turán type inequalities for the partial sums of the generating functions of Bernoulli and Euler numbers, Math. Nachr., Volume 285 (2012) no. 17-18, pp. 2129-2156 | DOI | MR | Zbl

[19] Diffalah Laissaoui; Fouad Bounebirat; Mourad Rahmani On the hyper-sums of powers of integers, Miskolc Math. Notes, Volume 18 (2017) no. 1, pp. 307-314 | DOI | MR | Zbl

[20] Robert J. Lang; Larry Howell Rigidly Foldable Quadrilateral Meshes From Angle Arrays, J. Mech. Robot., Volume 10 (2018) no. 2, 021004, 11 pages | DOI

[21] William Letsou; Long Cai Noncommutative Biology: Sequential Regulation of Complex Networks, PLoS Comput. Biol., Volume 12 (2016) no. 8, pp. 1-36

[22] Yasuo Ohno; Yoshitaka Sasaki On the parity of poly-Euler numbers, Algebraic number theory and related topics 2010 (RIMS Kôkyûroku Bessatsu), Volume B32, Research Institute for Mathematical Sciences, 2012, pp. 271-278 | MR | Zbl

[23] Yasuo Ohno; Yoshitaka Sasaki On poly-Euler numbers, J. Aust. Math. Soc., Volume 103 (2017) no. 1, pp. 126-144 | DOI | MR | Zbl

[24] Herbert J. Ryser Combinatorial properties of matrices of zeros and ones, Can. J. Math., Volume 9 (1957), pp. 371-377 | DOI | MR | Zbl

[25] Yoshitaka Sasaki On generalized poly-Bernoulli numbers and related L-functions, J. Number Theory, Volume 132 (2012) no. 1, pp. 156-170 | DOI | MR | Zbl

[26] Neil J. A. Sloane The on-line encyclopedia of integer sequences (Available at https://oeis.org)

[27] Richard P. Stanley Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, 1997, xii+325 pages (with a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original) | DOI | MR | Zbl

Cited by Sources: