Linear Relations of Siegel Poincaré Series and Non-vanishing of the Central Values of Spinor L-functions
Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 755-766.

In this paper, we will first investigate the linear relations of a one parameter family of Siegel Poincaré series. Then we give the applications to the non-vanishing of Fourier coefficients of Siegel cusp eigenforms and the central values.

Dans cet article, nous étudions d’abord les relations linéaires des familles à un paramètre des séries de Siegel–Poincaré. Nous donnons ensuite des applications de nos résultats à la non-annulation des coefficients de Fourier des formes propres cuspidales de Siegel et des valeurs centrales.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1226
Classification: 11F46, 11F30, 11F67
Keywords: Siegel Poincaré series, Fourier coefficients of Siegel cusp forms, non-vanishing of central values, Böcherer conjecture.
Zhining Wei 1

1 Department of Mathematics, Ohio State University, Columbus, OH 43210, USA
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2022__34_3_755_0,
     author = {Zhining Wei},
     title = {Linear {Relations} of {Siegel} {Poincar\'e} {Series} and {Non-vanishing} of the {Central} {Values} of {Spinor} $L$-functions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {755--766},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {34},
     number = {3},
     year = {2022},
     doi = {10.5802/jtnb.1226},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1226/}
}
TY  - JOUR
AU  - Zhining Wei
TI  - Linear Relations of Siegel Poincaré Series and Non-vanishing of the Central Values of Spinor $L$-functions
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2022
SP  - 755
EP  - 766
VL  - 34
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1226/
DO  - 10.5802/jtnb.1226
LA  - en
ID  - JTNB_2022__34_3_755_0
ER  - 
%0 Journal Article
%A Zhining Wei
%T Linear Relations of Siegel Poincaré Series and Non-vanishing of the Central Values of Spinor $L$-functions
%J Journal de théorie des nombres de Bordeaux
%D 2022
%P 755-766
%V 34
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1226/
%R 10.5802/jtnb.1226
%G en
%F JTNB_2022__34_3_755_0
Zhining Wei. Linear Relations of Siegel Poincaré Series and Non-vanishing of the Central Values of Spinor $L$-functions. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 755-766. doi : 10.5802/jtnb.1226. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1226/

[1] Anatoliĭ N. Andrianov Euler products corresponding to Siegel modular forms of genus 2, Usp. Mat. Nauk, Volume 29 (1974) no. 3, pp. 43-110 | Zbl

[2] Anatoliĭ N. Andrianov Quadratic forms and Hecke operators, Grundlehren der Mathematischen Wissenschaften, 286, Springer, 1987, xii+374 pages | DOI | Zbl

[3] Valentin Blomer Spectral summation formula for GSp(4) and moments of spinor L-functions, J. Eur. Math. Soc., Volume 21 (2019) no. 6, pp. 1751-1774 | DOI | Zbl

[4] Siegfried Böcherer Bemerkungen über die Dirichletreihen von Koecher und Maass, Mathematica Gottingensis, 68, 1986, 36 pages

[5] Soumya Das; Winfried Kohnen; Jyoti Sengupta Nonvanishing of Siegel-Poincaré series II, Acta Arith., Volume 156 (2012) no. 1, pp. 75-81 | Zbl

[6] Soumya Das; Jyoti Sengupta Nonvanishing of Siegel Poincaré series, Math. Z., Volume 272 (2012) no. 3, pp. 3-4 | Zbl

[7] Martin Dickson; Ameya Pitale; Abhishek Saha; Ralf Schmidt Explicit refinements of Böcherer’s conjecture for Siegel modular forms of squarefree level, J. Math. Soc. Japan, Volume 72 (2020) no. 1, pp. 251-301 | Zbl

[8] Masaaki Furusawa; Kazuki Morimoto Refined global Gross-Prasad conjecture on special Bessel periods and Böcherer’s conjecture, J. Eur. Math. Soc., Volume 23 (2021) no. 4, pp. 1295-1331 | DOI | Zbl

[9] I. S. Gradshteyn; I. M. Ryzhik Table of Integrals, Series, and Products, Academic Press Inc., 2007

[10] Henryk Iwaniec; Emmanuel Kowalski Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004, xii+615 pages

[11] Henryk Iwaniec; Peter Sarnak The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros, Isr. J. Math., Volume 120 (2000), pp. 155-177 | DOI

[12] Yoshiyuki Kitaoka Fourier coefficients of Siegel cusp forms of degree two, Nagoya Math. J., Volume 93 (1984), pp. 149-171 | DOI | Zbl

[13] Helmut Klingen Introductory lectures on Siegel modular forms, Cambridge Studies in Advanced Mathematics, 20, Cambridge University Press, 1990, x+162 pages | DOI

[14] Emmanuel Kowalski; Abhishek Saha; Jacob Tsimerman Local spectral equidistribution for Siegel modular forms and applications, Compos. Math., Volume 148 (2012) no. 2, pp. 335-384 | DOI | Zbl

[15] Joseph Lehner A short course in automorphic functions, Holt, Rinehart and Winston, 1966

[16] Charles J. Mozzochi On the nonvanishing of Poincaré series, Proc. Edinb. Math. Soc., II. Ser., Volume 32 (1989) no. 1, pp. 133-137

[17] Hans Petersson Über eine Metrisierung der Automorphen Formen und die Theorie der Poincaréschen Reihen, Math. Ann., Volume 117 (1940), pp. 453-529 | DOI | Zbl

[18] Ameya Pitale Siegel modular forms. A classical and representation-theoretic approach, Lecture Notes in Mathematics, 2240, Springer, 2019, ix+138 pages | DOI

[19] Ameya Pitale; Abhishek Saha; Ralf Schmidt Transfer of Siegel cusp forms of degree 2, Memoirs of the American Mathematical Society, 1090, American Mathematical Society, 2014, vi+107 pages

[20] Robert A. Rankin The vanishing of Poincaré series, Proc. Edinb. Math. Soc., II. Ser., Volume 23 (1980), pp. 151-161 | DOI | Zbl

Cited by Sources: