Let and be a root of , then the number field is called a simplest cubic field. In this paper we consider the family of unit equations where and . We completely solve the unit equations under the restriction .
Soient et une racine de . On dit que le corps de nombres est un corps cubique élémentaire. Dans cet article, nous considérons la famille des équations en unités algébriques de la forme où et . Nous résolvons complètement ces équations sous l’hypothèse .
Accepted:
Published online:
Keywords: Diophantine equations, unit equations, simplest cubic fields
@article{JTNB_2022__34_3_705_0, author = {Ingrid Vukusic and Volker Ziegler}, title = {On a family of unit equations over simplest cubic fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {705--718}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {3}, year = {2022}, doi = {10.5802/jtnb.1223}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1223/} }
TY - JOUR AU - Ingrid Vukusic AU - Volker Ziegler TI - On a family of unit equations over simplest cubic fields JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 705 EP - 718 VL - 34 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1223/ DO - 10.5802/jtnb.1223 LA - en ID - JTNB_2022__34_3_705_0 ER -
%0 Journal Article %A Ingrid Vukusic %A Volker Ziegler %T On a family of unit equations over simplest cubic fields %J Journal de théorie des nombres de Bordeaux %D 2022 %P 705-718 %V 34 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1223/ %R 10.5802/jtnb.1223 %G en %F JTNB_2022__34_3_705_0
Ingrid Vukusic; Volker Ziegler. On a family of unit equations over simplest cubic fields. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 705-718. doi : 10.5802/jtnb.1223. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1223/
[1] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | Zbl
[2] Integral points on elliptic curves defined by simplest cubic fields, Exp. Math., Volume 10 (2001) no. 1, pp. 91-102 | DOI | Zbl
[3] Linear forms in two logarithms and interpolation determinants. II, Acta Arith., Volume 133 (2008) no. 4, pp. 325-348 | DOI | Zbl
[4] A family of Thue equations involving powers of units of the simplest cubic fields, J. Théor. Nombres Bordeaux, Volume 27 (2015) no. 2, pp. 537-563 | DOI | Numdam | Zbl
[5] Verification of a conjecture of E. Thomas, J. Number Theory, Volume 44 (1993) no. 2, pp. 172-177 | DOI | Zbl
[6] SageMath, the Sage Mathematics Software System (Version 9.2), 2021 (http://www.sagemath.org/)
[7] The simplest cubic fields, Math. Comput., Volume 28 (1974), pp. 1137-1152 | DOI | Zbl
[8] Fundamental units for orders in certain cubic number fields, J. Reine Angew. Math., Volume 310 (1979), pp. 33-55 | Zbl
[9] Complete solutions to a family of cubic Diophantine equations, J. Number Theory, Volume 34 (1990) no. 2, pp. 235-250 | DOI | Zbl
Cited by Sources: