Le théorème de Grothendieck–Birkhoff établit que tout faisceaux vectoriel de dimension finie sur la droite projective
Grothendieck–Birkhoff Theorem states that every finite dimensional vector bundle over the projective line
Révisé le :
Accepté le :
Publié le :
Mots-clés : Global function fields, eichler orders, quotient graphs, vector bundles
Luis Arenas-Carmona 1 ; Claudio Bravo 1

@article{JTNB_2022__34_3_647_0, author = {Luis Arenas-Carmona and Claudio Bravo}, title = {On genera containing non-split {Eichler} orders over function fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {647--677}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {3}, year = {2022}, doi = {10.5802/jtnb.1221}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1221/} }
TY - JOUR AU - Luis Arenas-Carmona AU - Claudio Bravo TI - On genera containing non-split Eichler orders over function fields JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 647 EP - 677 VL - 34 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1221/ DO - 10.5802/jtnb.1221 LA - en ID - JTNB_2022__34_3_647_0 ER -
%0 Journal Article %A Luis Arenas-Carmona %A Claudio Bravo %T On genera containing non-split Eichler orders over function fields %J Journal de théorie des nombres de Bordeaux %D 2022 %P 647-677 %V 34 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1221/ %R 10.5802/jtnb.1221 %G en %F JTNB_2022__34_3_647_0
Luis Arenas-Carmona; Claudio Bravo. On genera containing non-split Eichler orders over function fields. Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 3, pp. 647-677. doi : 10.5802/jtnb.1221. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1221/
[1] On optimal embeddings and trees, J. Number Theory, Volume 193 (2018), pp. 91-117 | DOI | Zbl
[2] Representation fields for commutative orders, Ann. Inst. Fourier, Volume 62 (2012) no. 2, pp. 807-819 | DOI | Numdam | Zbl
[3] Representation fields for cyclic orders, Acta Arith., Volume 156 (2012) no. 2, pp. 143-158 | DOI | Zbl
[4] Eichler orders, trees and representation fields, Int. J. Number Theory, Volume 9 (2013), pp. 1725-1741 | DOI | Zbl
[5] Computing quaternion quotient graphs via representations of orders, J. Algebra, Volume 402 (2014), pp. 258-279 | DOI | Zbl
[6] Roots of unity in definite quaternion orders, Acta Arith., Volume 170 (2015) no. 4, pp. 381-393 | DOI | Zbl
[7] Spinor class fields for generalized Eichler orders, J. Théor. Nombres Bordeaux, Volume 28 (2016) no. 3, pp. 679-698 | DOI | Numdam | Zbl
[8] Vector bundles and torsion free sheaves on degenerations of elliptic curves, Global aspects of complex geometry, Springer, 2006, pp. 83-129 | DOI | Zbl
[9] Groupes réductifs sur un corps local, Publ. Math., Inst. Hautes Étud. Sci., Volume 41 (1972), pp. 5-251 | DOI | Numdam | Zbl
[10] Riemann–Roch Theorem for locally principal orders, Math. Ann., Volume 276 (1987), pp. 529-536 | DOI | Zbl
[11] Higher Finiteness Properties of Reductive Arithmetic Groups in Positive Characteristic: the Rank Theorem, Ann. Math., Volume 177 (2013) no. 1, pp. 311-366 | Zbl
[12] An embedding theorem for quaternion algebras, J. Lond. Math. Soc., Volume 60 (1999) no. 1, pp. 33-44 | DOI | Zbl
[13] Explicit formula of the traces of Hecke operators for
[14] Quotients of trees for arithmetic subgroups of
[15] Selectivity in quaternion algebras, J. Number Theory, Volume 132 (2012) no. 7, pp. 1425-1437 | DOI | Zbl
[16] Embedding orders in central simple algebras, J. Théor. Nombres Bordeaux, Volume 24 (2012), pp. 405-424 | DOI | Zbl
[17] Small isospectral and nonisometric orbifolds of dimension 2 and 3, Math. Z., Volume 281 (2015) no. 1-2, pp. 523-569 | DOI | Zbl
[18] The structure of the group
[19] Serre’s generalization of Nagao’s theorem: an elementary approach, Trans. Am. Math. Soc., Volume 353 (2001) no. 2, pp. 749-767 | DOI | Zbl
[20] The generalization of Nagao’s theorem to other subrings of the rational function field, Commun. Algebra, Volume 31 (2003) no. 11, pp. 5199-5242 | DOI | Zbl
[21] The minimum index of a non-congruence subgroup of
[22] The minimum index of a non-congruence subgroup of
[23] The stabilizers in a Drinfeld modular group of the vertices of its Bruhat-Tits tree: an elementary approach, Int. J. Algebra Comput., Volume 23 (2013) no. 7, pp. 1653-1683 | DOI | Zbl
[24] On
[25] Introduction to quadratic forms, Grundlehren der Mathematischen Wissenschaften, 117, Springer, 1963 | DOI
[26] Local Diophantine properties of modular curves of
[27] Le Probleme des Groupes de Congruence Pour
[28] Trees, Springer, 1980 | DOI | Numdam
[29] Split orders and convex polytopes in buildings, J. Number Theory, Volume 130 (2010) no. 1, pp. 101-115 | DOI | Zbl
[30] Chevalley groups over polynomial rings, Homological group theory (Durham, 1977) (London Mathematical Society Lecture Note Series), Volume 36, Cambridge University Press, 1979, pp. 359-368 | DOI | Zbl
[31] The fundamental domain of the tree of
[32] Variétés Riemanniennes isospectrales et non isométriques, Ann. Math., Volume 112 (1980), pp. 21-32 | DOI | Zbl
[33] Basic Number Theory, Grundlehren der Mathematischen Wissenschaften, 144, Springer, 1973 | DOI
Cité par Sources :