Grothendieck–Birkhoff Theorem states that every finite dimensional vector bundle over the projective line splits as the sum of one dimensional vector bundles (line bundles). This can be rephrased, in terms of orders, as stating that all maximal -orders in a matrix algebra split. This is useful, since split orders play an important role when computing quotient graphs. In this work we study the extent to which this result can be generalized to Eichler -orders when the base field is finite. To be precise, we characterize both the genera of Eichler orders containing only split orders and the genera containing only a finite number of non-split isomorphism classes. The method developed here also allows us to compute quotient graphs for some subgroups of of arithmetical interest.
Le théorème de Grothendieck–Birkhoff établit que tout faisceaux vectoriel de dimension finie sur la droite projective se scinde en somme de faisceaux vectoriels unidimensionnels (fibrés en droites). Il peut être reformulé en termes d’ordres comme l’énoncé que tous les -ordres maximaux se scindent. Ceci est utile, car les ordres scindés jouent un rôle important dans le calcul des graphes quotients. Dans ce travail, on étudie dans quelle mesure ce résultat se généralise aux -ordres d’Eichler, lorsque le corps de base est fini. Pour être précis, on caractérise, d’une part, les genres des ordres d’Eichler contenant uniquement des ordres scindés et, d’autre part, les genres ne contenant qu’un nombre fini de classes d’isomorphie non scindées. La méthode développée ici nous permet également de calculer les graphes quotients pour certains sous-groupes de d’intérêt arithmétique.
Revised:
Accepted:
Published online:
Keywords: Global function fields, eichler orders, quotient graphs, vector bundles
@article{JTNB_2022__34_3_647_0, author = {Luis Arenas-Carmona and Claudio Bravo}, title = {On genera containing non-split {Eichler} orders over function fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {647--677}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {3}, year = {2022}, doi = {10.5802/jtnb.1221}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1221/} }
TY - JOUR AU - Luis Arenas-Carmona AU - Claudio Bravo TI - On genera containing non-split Eichler orders over function fields JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 647 EP - 677 VL - 34 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1221/ DO - 10.5802/jtnb.1221 LA - en ID - JTNB_2022__34_3_647_0 ER -
%0 Journal Article %A Luis Arenas-Carmona %A Claudio Bravo %T On genera containing non-split Eichler orders over function fields %J Journal de théorie des nombres de Bordeaux %D 2022 %P 647-677 %V 34 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1221/ %R 10.5802/jtnb.1221 %G en %F JTNB_2022__34_3_647_0
Luis Arenas-Carmona; Claudio Bravo. On genera containing non-split Eichler orders over function fields. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 647-677. doi : 10.5802/jtnb.1221. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1221/
[1] On optimal embeddings and trees, J. Number Theory, Volume 193 (2018), pp. 91-117 | DOI | Zbl
[2] Representation fields for commutative orders, Ann. Inst. Fourier, Volume 62 (2012) no. 2, pp. 807-819 | DOI | Numdam | Zbl
[3] Representation fields for cyclic orders, Acta Arith., Volume 156 (2012) no. 2, pp. 143-158 | DOI | Zbl
[4] Eichler orders, trees and representation fields, Int. J. Number Theory, Volume 9 (2013), pp. 1725-1741 | DOI | Zbl
[5] Computing quaternion quotient graphs via representations of orders, J. Algebra, Volume 402 (2014), pp. 258-279 | DOI | Zbl
[6] Roots of unity in definite quaternion orders, Acta Arith., Volume 170 (2015) no. 4, pp. 381-393 | DOI | Zbl
[7] Spinor class fields for generalized Eichler orders, J. Théor. Nombres Bordeaux, Volume 28 (2016) no. 3, pp. 679-698 | DOI | Numdam | Zbl
[8] Vector bundles and torsion free sheaves on degenerations of elliptic curves, Global aspects of complex geometry, Springer, 2006, pp. 83-129 | DOI | Zbl
[9] Groupes réductifs sur un corps local, Publ. Math., Inst. Hautes Étud. Sci., Volume 41 (1972), pp. 5-251 | DOI | Numdam | Zbl
[10] Riemann–Roch Theorem for locally principal orders, Math. Ann., Volume 276 (1987), pp. 529-536 | DOI | Zbl
[11] Higher Finiteness Properties of Reductive Arithmetic Groups in Positive Characteristic: the Rank Theorem, Ann. Math., Volume 177 (2013) no. 1, pp. 311-366 | Zbl
[12] An embedding theorem for quaternion algebras, J. Lond. Math. Soc., Volume 60 (1999) no. 1, pp. 33-44 | DOI | Zbl
[13] Explicit formula of the traces of Hecke operators for , J. Math. Soc. Japan, Volume 26 (1974), pp. 56-82
[14] Quotients of trees for arithmetic subgroups of over a rational function field, J. Group Theory, Volume 18 (2015) no. 1, pp. 61-74 | DOI | Zbl
[15] Selectivity in quaternion algebras, J. Number Theory, Volume 132 (2012) no. 7, pp. 1425-1437 | DOI | Zbl
[16] Embedding orders in central simple algebras, J. Théor. Nombres Bordeaux, Volume 24 (2012), pp. 405-424 | DOI | Zbl
[17] Small isospectral and nonisometric orbifolds of dimension 2 and 3, Math. Z., Volume 281 (2015) no. 1-2, pp. 523-569 | DOI | Zbl
[18] The structure of the group : Variations on a theme of Soulé, Algebra Number Theory, Volume 3 (2009) no. 4, pp. 393-409 | DOI | Zbl
[19] Serre’s generalization of Nagao’s theorem: an elementary approach, Trans. Am. Math. Soc., Volume 353 (2001) no. 2, pp. 749-767 | DOI | Zbl
[20] The generalization of Nagao’s theorem to other subrings of the rational function field, Commun. Algebra, Volume 31 (2003) no. 11, pp. 5199-5242 | DOI | Zbl
[21] The minimum index of a non-congruence subgroup of over an arithmetic domain, Isr. J. Math., Volume 133 (2003), pp. 29-44 | DOI | Zbl
[22] The minimum index of a non-congruence subgroup of over an arithmetic domain II. The rank zero cases, J. Lond. Math. Soc., Volume 71 (2005) no. 1, pp. 53-68 | DOI | Zbl
[23] The stabilizers in a Drinfeld modular group of the vertices of its Bruhat-Tits tree: an elementary approach, Int. J. Algebra Comput., Volume 23 (2013) no. 7, pp. 1653-1683 | DOI | Zbl
[24] On , J. Inst. Polytechn., Osaka City Univ., Ser. A, Volume 10 (1959), pp. 117-121 | Zbl
[25] Introduction to quadratic forms, Grundlehren der Mathematischen Wissenschaften, 117, Springer, 1963 | DOI
[26] Local Diophantine properties of modular curves of -elliptic sheaves, J. Reine Angew. Math., Volume 664 (2012), pp. 115-140 | Zbl
[27] Le Probleme des Groupes de Congruence Pour , Ann. Math., Volume 92 (1970), pp. 489-527 | DOI | Zbl
[28] Trees, Springer, 1980 | DOI | Numdam
[29] Split orders and convex polytopes in buildings, J. Number Theory, Volume 130 (2010) no. 1, pp. 101-115 | DOI | Zbl
[30] Chevalley groups over polynomial rings, Homological group theory (Durham, 1977) (London Mathematical Society Lecture Note Series), Volume 36, Cambridge University Press, 1979, pp. 359-368 | DOI | Zbl
[31] The fundamental domain of the tree of over the function field of an elliptic curve, Duke Math. J., Volume 72 (1993) no. 1, pp. 85-97 | Zbl
[32] Variétés Riemanniennes isospectrales et non isométriques, Ann. Math., Volume 112 (1980), pp. 21-32 | DOI | Zbl
[33] Basic Number Theory, Grundlehren der Mathematischen Wissenschaften, 144, Springer, 1973 | DOI
Cited by Sources: