We prove the existence of a subset, with positive natural density, of squarefree integers such that the –rank of the ideal class group of is , where is the number of prime divisors of that are modulo . Recall that for the class groups associated to or an analogous subset of does not exist.
Nous prouvons l’existence d’un sous–ensemble, de densité positive, d’entiers sans facteur carré, tels que le –rang du groupe de classes d’idéaux de vaut . On a désigné par le nombre de diviseurs premiers de l’entier qui sont congrus à modulo . Rappelons que, pour les groupes de classes associés à et , un sous–ensemble analogue d’entiers n’existe pas.
Revised:
Accepted:
Published online:
Keywords: Class groups, Dirichlet biquadratic fields
Étienne Fouvry 1; Peter Koymans 2
@article{JTNB_2022__34_3_637_0, author = {\'Etienne Fouvry and Peter Koymans}, title = {On {Dirichlet} biquadratic fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {637--646}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {3}, year = {2022}, doi = {10.5802/jtnb.1220}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1220/} }
TY - JOUR AU - Étienne Fouvry AU - Peter Koymans TI - On Dirichlet biquadratic fields JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 637 EP - 646 VL - 34 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1220/ DO - 10.5802/jtnb.1220 LA - en ID - JTNB_2022__34_3_637_0 ER -
%0 Journal Article %A Étienne Fouvry %A Peter Koymans %T On Dirichlet biquadratic fields %J Journal de théorie des nombres de Bordeaux %D 2022 %P 637-646 %V 34 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1220/ %R 10.5802/jtnb.1220 %G en %F JTNB_2022__34_3_637_0
Étienne Fouvry; Peter Koymans. On Dirichlet biquadratic fields. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 637-646. doi : 10.5802/jtnb.1220. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1220/
[1] Kuroda’s formula and arithmetic statistics, Math. Z., Volume 300 (2022) no. 2, pp. 1509-1527 | DOI | Zbl
[2] Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) (Lecture Notes in Mathematics), Volume 1068, Springer, 1984, pp. 33-62 | DOI | Zbl
[3] Étude heuristique des groupes de classes des corps de nombres, J. Reine Angew. Math., Volume 404 (1990), pp. 39-76 | Zbl
[4] Recherches sur les formes quadratiques à coëfficients et à indéterminées complexes, J. Reine Angew. Math., Volume 24 (1842), pp. 291-371
[5] Cohen-Lenstra heuristics of quadratic number fields, Algorithmic number theory (Lecture Notes in Computer Science), Volume 4076, Springer, 2006, pp. 40-55 | DOI | Zbl
[6] On the 4-rank of class groups of quadratic number fields, Invent. Math., Volume 167 (2007) no. 3, pp. 455-513 | DOI | Zbl
[7] On the negative Pell equation, Ann. Math., Volume 172 (2010) no. 3, pp. 2035-2104 | DOI | Zbl
[8] On the Spiegelungssatz for the 4-rank, Algebra Number Theory, Volume 4 (2010) no. 5, pp. 493-508 | DOI | Zbl
[9] On the -rank of class groups of Dirichlet biquadratic fields, J. Inst. Math. Jussieu, Volume 21 (2020) no. 5, pp. 1543-1570 | DOI | Zbl
[10] The 4-class ranks of quadratic fields, Invent. Math., Volume 77 (1984), pp. 489-515 | DOI | Zbl
[11] The theory of algebraic number fields, Springer, 1998 (translated from the German and with a preface by I. T. Adamson, with an introduction by F. Lemmermeyer and N. Schappacher) | DOI
[12] The -rank of class groups of (2021) (https://arxiv.org/abs/2101.03407)
[13] On the distribution of for degree cyclic fields, J. Eur. Math. Soc., Volume 24 (2022) no. 4, pp. 1189-1283 | DOI | Zbl
[14] Kuroda’s class number formula, Acta Arith., Volume 66 (1994) no. 3, pp. 245-260 | DOI | Zbl
[15] Ideal class groups of cyclotomic number fields I, Acta Arith., Volume 72 (1995) no. 4, pp. 347-359 | DOI | Zbl
[16] Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, 2007
[17] -Selmer groups, -class groups, and Goldfeld’s conjecture (2017) (https://arxiv.org/abs/1702.02325)
Cited by Sources: