On Dirichlet biquadratic fields
Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 637-646.

We prove the existence of a subset, with positive natural density, of squarefree integers n>0 such that the 4–rank of the ideal class group of (-n,n) is ω 3 (n)-1, where ω 3 (n) is the number of prime divisors of n that are 3 modulo 4. Recall that for the class groups associated to (n) or (-n) an analogous subset of n does not exist.

Nous prouvons l’existence d’un sous–ensemble, de densité positive, d’entiers n>0 sans facteur carré, tels que le 4–rang du groupe de classes d’idéaux de (-n,n) vaut ω 3 (n)-1. On a désigné par ω 3 (n) le nombre de diviseurs premiers de l’entier n qui sont congrus à 3 modulo 4. Rappelons que, pour les groupes de classes associés à (n) et (-n), un sous–ensemble analogue d’entiers n n’existe pas.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1220
Classification: 11R29, 11R45
Keywords: Class groups, Dirichlet biquadratic fields

Étienne Fouvry 1; Peter Koymans 2

1 Université Paris–Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405 Orsay, France
2 Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2022__34_3_637_0,
     author = {\'Etienne Fouvry and Peter Koymans},
     title = {On {Dirichlet} biquadratic fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {637--646},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {34},
     number = {3},
     year = {2022},
     doi = {10.5802/jtnb.1220},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1220/}
}
TY  - JOUR
AU  - Étienne Fouvry
AU  - Peter Koymans
TI  - On Dirichlet biquadratic fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2022
SP  - 637
EP  - 646
VL  - 34
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1220/
DO  - 10.5802/jtnb.1220
LA  - en
ID  - JTNB_2022__34_3_637_0
ER  - 
%0 Journal Article
%A Étienne Fouvry
%A Peter Koymans
%T On Dirichlet biquadratic fields
%J Journal de théorie des nombres de Bordeaux
%D 2022
%P 637-646
%V 34
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1220/
%R 10.5802/jtnb.1220
%G en
%F JTNB_2022__34_3_637_0
Étienne Fouvry; Peter Koymans. On Dirichlet biquadratic fields. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 637-646. doi : 10.5802/jtnb.1220. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1220/

[1] Stephanie Chan; Djordjo Milovic Kuroda’s formula and arithmetic statistics, Math. Z., Volume 300 (2022) no. 2, pp. 1509-1527 | DOI | Zbl

[2] Henri Cohen; Hendrik W. Lenstra Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) (Lecture Notes in Mathematics), Volume 1068, Springer, 1984, pp. 33-62 | DOI | Zbl

[3] Henri Cohen; Jacques Martinet Étude heuristique des groupes de classes des corps de nombres, J. Reine Angew. Math., Volume 404 (1990), pp. 39-76 | Zbl

[4] Gustav L. Dirichlet Recherches sur les formes quadratiques à coëfficients et à indéterminées complexes, J. Reine Angew. Math., Volume 24 (1842), pp. 291-371

[5] Étienne Fouvry; Jürgen Klüners Cohen-Lenstra heuristics of quadratic number fields, Algorithmic number theory (Lecture Notes in Computer Science), Volume 4076, Springer, 2006, pp. 40-55 | DOI | Zbl

[6] Étienne Fouvry; Jürgen Klüners On the 4-rank of class groups of quadratic number fields, Invent. Math., Volume 167 (2007) no. 3, pp. 455-513 | DOI | Zbl

[7] Étienne Fouvry; Jürgen Klüners On the negative Pell equation, Ann. Math., Volume 172 (2010) no. 3, pp. 2035-2104 | DOI | Zbl

[8] Étienne Fouvry; Jürgen Klüners On the Spiegelungssatz for the 4-rank, Algebra Number Theory, Volume 4 (2010) no. 5, pp. 493-508 | DOI | Zbl

[9] Étienne Fouvry; Peter Koymans; Carlo Pagano On the 4-rank of class groups of Dirichlet biquadratic fields, J. Inst. Math. Jussieu, Volume 21 (2020) no. 5, pp. 1543-1570 | DOI | Zbl

[10] Frank Gerth The 4-class ranks of quadratic fields, Invent. Math., Volume 77 (1984), pp. 489-515 | DOI | Zbl

[11] David Hilbert The theory of algebraic number fields, Springer, 1998 (translated from the German and with a preface by I. T. Adamson, with an introduction by F. Lemmermeyer and N. Schappacher) | DOI

[12] Peter Koymans; Adam Morgan; Harry Smit The 4-rank of class groups of K(n) (2021) (https://arxiv.org/abs/2101.03407)

[13] Peter Koymans; Carlo Pagano On the distribution of Cl(K)[ ] for degree cyclic fields, J. Eur. Math. Soc., Volume 24 (2022) no. 4, pp. 1189-1283 | DOI | Zbl

[14] Franz Lemmermeyer Kuroda’s class number formula, Acta Arith., Volume 66 (1994) no. 3, pp. 245-260 | DOI | Zbl

[15] Franz Lemmermeyer Ideal class groups of cyclotomic number fields I, Acta Arith., Volume 72 (1995) no. 4, pp. 347-359 | DOI | Zbl

[16] Hugh L. Montgomery; Robert C. Vaughan Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, 2007

[17] Alexander Smith 2 -Selmer groups, 2 -class groups, and Goldfeld’s conjecture (2017) (https://arxiv.org/abs/1702.02325)

Cited by Sources: