On the p-torsion of the Tate–Shafarevich group of abelian varieties over higher dimensional bases over finite fields
Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 2, pp. 497-513.

We prove a finiteness theorem for the first flat cohomology group of finite flat group schemes over integral normal proper varieties over finite fields. As a consequence, we can prove the invariance of the finiteness of the Tate–Shafarevich group of Abelian schemes over higher dimensional bases under isogenies and alterations over/of such bases for the p-part. Along the way, we generalize previous results on the Tate–Shafarevich group in this situation.

Nous prouvons un théorème de finitude pour le premier groupe de cohomologie plate des schémas en groupes finis et plats sur les variétés intègres, normales et propres sur un corps fini. En conséquence, nous pouvons prouver l’invariance de la finitude de la partie p-primaire du groupe de Tate–Shafarevich des schémas abéliens sur des bases de dimension supérieure par isogénie et changement de base. Chemin faisant, nous généralisons certains des résultats précédents sur le groupe de Tate–Shafarevich dans ce contexte.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1211
Classification: 11G10, 14F20, 14K15
Keywords: Tate–Shafarevich groups of abelian varieties over higher dimensional bases over finite fields, $p$-torsion in characteristic $p > 0$; Abelian varieties of dimension $> 1$; Étale and other Grothendieck topologies and cohomologies; Arithmetic ground fields for abelian varieties
Timo Keller 1

1 Universität Bayreuth Lehrstuhl Mathematik II (Computeralgebra) Universitätsstraße 30 95440 Bayreuth, Germany
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2022__34_2_497_0,
     author = {Timo Keller},
     title = {On the $p$-torsion of the {Tate{\textendash}Shafarevich} group of abelian varieties over higher dimensional bases over finite fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {497--513},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {34},
     number = {2},
     year = {2022},
     doi = {10.5802/jtnb.1211},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1211/}
}
TY  - JOUR
AU  - Timo Keller
TI  - On the $p$-torsion of the Tate–Shafarevich group of abelian varieties over higher dimensional bases over finite fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2022
SP  - 497
EP  - 513
VL  - 34
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1211/
DO  - 10.5802/jtnb.1211
LA  - en
ID  - JTNB_2022__34_2_497_0
ER  - 
%0 Journal Article
%A Timo Keller
%T On the $p$-torsion of the Tate–Shafarevich group of abelian varieties over higher dimensional bases over finite fields
%J Journal de théorie des nombres de Bordeaux
%D 2022
%P 497-513
%V 34
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1211/
%R 10.5802/jtnb.1211
%G en
%F JTNB_2022__34_2_497_0
Timo Keller. On the $p$-torsion of the Tate–Shafarevich group of abelian varieties over higher dimensional bases over finite fields. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 2, pp. 497-513. doi : 10.5802/jtnb.1211. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1211/

[1] Michael Artin; Alexandre Grothendieck; Jean-Louis Verdier Séminaire de Géométrie Algébrique du Bois Marie – 1963–64 – Théorie des topos et cohomologie étale des schémas – (SGA 4) – Vol. 2, Lecture Notes in Mathematics, 270, Springer, 1972, iv+418 pages

[2] Pierre Berthelot; Alexandre Grothendieck; Luc Illusie Séminaire de Géométrie Algébrique du Bois Marie – 1966–67 – Théorie des intersections et théorème de Riemann-Roch – (SGA 6), Lecture Notes in Mathematics, 225, Springer, 1971, xii+700 pages

[3] Siegfried Bosch; Werner Lütkebohmert; Michel Raynaud Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 21, Springer, 1990, x+325 pages | DOI

[4] Ulrich Görtz; Torsten Wedhorn Algebraic geometry I. Schemes. With examples and exercises, Advanced Lectures in Mathematics, Vieweg+Teubner, 2010, vii+615 pages | DOI | Zbl

[5] Alexandre Grothendieck Séminaire de Géométrie Algébrique du Bois Marie – 1960–61 – Revêtements étales et groupe fondamental – (SGA 1), Lecture Notes in Mathematics, 224, Springer, 1971, xxii+447 pages

[6] Alexandre Grothendieck; Jean Dieudonné Eléments de géométrie algébrique : III. Étude cohomologique des faisceaux cohérents, Première partie., Publ. Math., Inst. Hautes Étud. Sci., Volume 11 (1961), pp. 5-167

[7] Robin Hartshorne Algebraic geometry. Corr. 3rd printing., Graduate Texts in Mathematics, 52, Springer, 1983, xvi+496 pages

[8] Aise J. de Jong Finite locally free group schemes in characteristic p and Dieudonné modules., Invent. Math., Volume 114 (1993) no. 1, pp. 89-137 | DOI | Zbl

[9] Aise J. de Jong Smoothness, semi-stability and alterations., Publ. Math., Inst. Hautes Étud. Sci., Volume 83 (1996), pp. 51-93 | Numdam | Zbl

[10] Timo Keller On the Tate–Shafarevich group of Abelian schemes over higher dimensional bases over finite fields, Manuscr. Math., Volume 150 (2016), pp. 211-245 | DOI | MR | Zbl

[11] Timo Keller On an analogue of the conjecture of Birch and Swinnerton–Dyer for Abelian schemes over higherdimensional bases over finite fields, Doc. Math., Volume 24 (2019), pp. 915-993 | MR | Zbl

[12] Qing Liu Algebraic geometry and arithmetic curves. Transl. by Reinie Erné., Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2006, xv+577 pages

[13] James S. Milne Étale cohomology., Princeton Mathematical Series, 33, Princeton University Press, 1980, xiii+323 pages | MR

[14] James S. Milne Abelian varieties, Arithmetic geometry (Pap. Conf., Storrs/Conn., 1984), Springer, 1986, pp. 103-150 | DOI | Zbl

[15] David Mumford Abelian varieties, Oxford University Press, 1970, viii+242 pages

[16] Michel Raynaud; Laurent Gruson Critères de platitude et de projectivité. Techniques de « platification » d’un module, Invent. Math., Volume 13 (1971), pp. 1-89 | DOI | Zbl

[17] Stephen S. Shatz Group schemes, formal groups, and p-divisible groups, Arithmetic geometry (Pap. Conf., Storrs/Conn., 1984), Springer, 1986, pp. 29-78 | DOI | MR | Zbl

[18] Tamás Szamuely Galois groups and fundamental groups., Cambridge Studies in Advanced Mathematics, 117, Cambridge University Press, 2009, ix+270 pages | DOI

[19] user19475 Finitness of syntomic/fppf cohomology with coefficients in a finite flat group scheme MathOverflow, https://mathoverflow.net/q/257441 (version: 2016-12-19)

Cited by Sources: