On the equality of periods of Kontsevich–Zagier
Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 2, pp. 323-343.

Les périodes effectives furent définies par Kontsevich et Zagier comme étant les nombres complexes dont les parties réelle et imaginaire sont valeurs d’intégrales absolument convergentes de fonctions -rationnelles sur des domaines -semi-algébriques dans d . La conjecture des périodes de Kontsevich–Zagier affirme que si une période admet deux représentations intégrales, alors elles sont reliées par une suite finie d’opérations en utilisant uniquement trois règles respectant la rationalité des fonctions et domaines : sommes d’intégrales par intégrandes ou domaines, changement de variables et formule de Stokes.

Dans cet article, nous introduisons deux interprétations géométriques de cette conjecture, vue comme une généralisation du 3ème problème de Hilbert soit pour des ensembles semi-algébriques compacts soit pour des polyèdres rationnels munis d’une forme volume algébrique par morceaux. Basés sur des résultats partiels connus pour des problèmes de Hilbert analogues, nous étudions des schémas géométriques possibles pour obtenir une preuve de la conjecture et ses obstructions potentielles.

Effective periods were defined by Kontsevich and Zagier as complex numbers whose real and imaginary parts are values of absolutely convergent integrals of -rational functions over -semi-algebraic domains in d . The Kontsevich–Zagier period conjecture states that any two different integral expressions of a period are related by a finite sequence of transformations only using three rules respecting the rationality of functions and domains: integral addition by integrands or domains, change of variables and Stokes’ formula.

In this paper, we introduce two geometric interpretations of this conjecture, seen as a generalization of Hilbert’s third problem involving either compact semi-algebraic sets or rational polyhedra equipped with piece-wise algebraic forms. Based on known partial results for analogous Hilbert’s third problems, we study possible geometric schemes to prove this conjecture and their potential obstructions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1204
Classification : 11J81, 51M25, 52B45, 14P10
Mots clés : Periods, Kontsevich–Zagier period conjecture, Hilbert third problem.
Jacky Cresson 1 ; Juan Viu-Sos 2

1 Laboratoire de Mathématiques et de leurs Applications, UMR CNRS 5142, Bâtiment IPRA - Université de Pau et des Pays de l’Adour, Avenue de l’Université - BP 1155, 64013 Pau, France
2 Dpto. de Matemáticas e Informática, ETSI Caminos Canales y Puertos, Universidad Politécnica de Madrid, C\Prof. Aranguren 3, 28040 Madrid, Spain
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2022__34_2_323_0,
     author = {Jacky Cresson and Juan Viu-Sos},
     title = {On the equality of periods of {Kontsevich{\textendash}Zagier}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {323--343},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {34},
     number = {2},
     year = {2022},
     doi = {10.5802/jtnb.1204},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1204/}
}
TY  - JOUR
AU  - Jacky Cresson
AU  - Juan Viu-Sos
TI  - On the equality of periods of Kontsevich–Zagier
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2022
SP  - 323
EP  - 343
VL  - 34
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1204/
DO  - 10.5802/jtnb.1204
LA  - en
ID  - JTNB_2022__34_2_323_0
ER  - 
%0 Journal Article
%A Jacky Cresson
%A Juan Viu-Sos
%T On the equality of periods of Kontsevich–Zagier
%J Journal de théorie des nombres de Bordeaux
%D 2022
%P 323-343
%V 34
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1204/
%R 10.5802/jtnb.1204
%G en
%F JTNB_2022__34_2_323_0
Jacky Cresson; Juan Viu-Sos. On the equality of periods of Kontsevich–Zagier. Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 2, pp. 323-343. doi : 10.5802/jtnb.1204. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1204/

[1] Yves André Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, 17, Société Mathématique de France, 2004 | Zbl

[2] Yves André Idées galoisiennes, Éditions de l’École polytechnique, 2012, pp. 1-16 | MR

[3] Joseph Ayoub Periods and the conjectures of Grothendieck and Kontsevich–Zagier, Eur. Math. Soc. Newsl., Volume 91 (2014), pp. 12-18 | MR | Zbl

[4] Joseph Ayoub Une version relative de la conjecture des périodes de Kontsevich–Zagier, Ann. Math., Volume 181 (2015) no. 3, pp. 905-992 | DOI | MR | Zbl

[5] Saugata Basu; Richard Pollack; Marie-Françoise Roy Algorithms in real algebraic geometry, Algorithms and Computation in Mathematics, 10, Springer, 2006

[6] Andreas Blass; Stephen Schanuel On the volume of balls (http://www.math.lsa.umich.edu/~ablass/vol.pdf)

[7] Jacek Bochnak; Michel Coste; Marie-Françoise Roy Real Algebraic Geometry, Springer, 1998 | DOI

[8] Lev A. Borisov The class of the affine line is a zero divisor in the Grothendieck ring, J. Algebr. Geom., Volume 27 (2018) no. 2, pp. 203-209 | DOI | MR | Zbl

[9] Pierre Cartier Décomposition des polyèdres: le point sur le troisième problème de Hilbert, Séminaire Bourbaki 1984/85 (Astérisque), Volume 1984, Société Mathématique de France, 1986, pp. 133-134 | Numdam | Zbl

[10] Johan Commelin; Philipp Habegger; Annette Huber Exponential periods and o-minimality I (2020) (https://arxiv.org/abs/2007.08280)

[11] Jacky Cresson; Juan Viu-Sos On the transcendence and complexity of periods of Kontsevich–Zagier (in preparation)

[12] Max Dehn Ueber den Rauminhalt, Math. Ann., Volume 55 (1901) no. 3, pp. 465-478 | DOI | MR

[13] Stéphane Fischler; Tanguy Rivoal On the values of G-functions, Comment. Math. Helv., Volume 89 (2014) no. 2, pp. 313-341 | DOI | Zbl

[14] Robert Hardt; Pascal Lambrechts; Victor Turchin; Ismar Volić Real homotopy theory of semi-algebraic sets, Algebr. Geom. Topol., Volume 11 (2011) no. 5, pp. 2477-2545 | DOI | MR | Zbl

[15] Andre Henriques; Igor Pak Volume-preserving PL-maps between polyhedra (2004) (http://www.math.ucla.edu/~pak/papers/henri4.pdf)

[16] Annette Huber; Gisbert Wüstholz Transcendence and Linear Relations of 1-Periods, Cambridge Tracts in Mathematics, 227, Cambridge University Press, 2022 | DOI

[17] Robion C. Kirby; Laurence C. Siebenmann On the triangulation of manifolds and the Hauptvermutung, Bull. Am. Math. Soc., Volume 75 (1969), pp. 742-749 | DOI | MR | Zbl

[18] Maxim Kontsevich; Yan Soibelman Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon) (Mathematical Physics Studies), Volume 21, Kluwer Academic Publishers, 2000, pp. 255-307 | MR | Zbl

[19] Maxim Kontsevich; Don Zagier Periods, Mathematics unlimited—2001 and beyond, Springer, 2001, pp. 771-808 | DOI | Zbl

[20] Greg Kuperberg A volume-preserving counterexample to the Seifert conjecture, Comment. Math. Helv., Volume 71 (1996) no. 1, pp. 70-97 | DOI | MR | Zbl

[21] Miklós Laczkovich Equidecomposability and discrepancy; a solution of Tarski’s circle-squaring problem, J. Reine Angew. Math., Volume 404 (1990), pp. 77-117 | MR | Zbl

[22] Michael Larsen; Valery A. Lunts Rationality of motivic zeta function and cut-and-paste problem (2014) (https://arxiv.org/abs/1410.7099)

[23] Qing Liu; Julien Sebag The Grothendieck ring of varieties and piecewise isomorphisms, Math. Z., Volume 265 (2010) no. 2, pp. 321-342 | MR | Zbl

[24] John Milnor Two complexes which are homeomorphic but combinatorially distinct, Ann. Math., Volume 74 (1961), pp. 575-590 | DOI | MR | Zbl

[25] Jürgen Moser Trans. Amer. Math. Soc, Trans. Am. Math. Soc., Volume 120 (1965), pp. 286-294

[26] Stefan Müller-Stach What is ...a period?, Notices Am. Math. Soc., Volume 61 (2014) no. 8, pp. 898-899 | DOI | MR | Zbl

[27] Toru Ohmoto; Masahiro Shiota C 1 -triangulations of semialgebraic sets, J. Topol., Volume 10 (2017) no. 3, pp. 765-775 | DOI | MR | Zbl

[28] Igor Pak Lectures on Discrete and Polyhedral Geometry (2015) (http://www.math.ucla.edu/~pak/geompol8.pdf)

[29] Masahiro Shiota; Masataka Yokoi Triangulations of subanalytic sets and locally subanalytic manifolds, Trans. Am. Math. Soc., Volume 286 (1984) no. 2, pp. 727-750 | DOI | MR | Zbl

[30] Michael Spivak A comprehensive introduction to differential geometry. Vol. I, Publish or Perish Inc., 1979 | MR

[31] Jean-Pierre Sydler Conditions nécessaires et suffisantes pour l’équivalence des polyèdres de l’espace euclidien à trois dimensions, Comment. Math. Helv., Volume 40 (1965), pp. 43-80 | DOI | Zbl

[32] Juan Viu-Sos A semi-canonical reduction for periods of Kontsevich–Zagier, Int. J. Number Theory, Volume 17 (2021) no. 1, pp. 147-174 | DOI | MR | Zbl

[33] Michel Waldschmidt Valeurs zêta multiples. Une introduction, J. Théor. Nombres Bordeaux, Volume 12 (1999) no. 2, pp. 581-595 | DOI | Zbl

[34] Michel Waldschmidt Transcendence of periods: the state of the art, Pure Appl. Math. Q., Volume 2 (2006) no. 2, pp. 435-463 | DOI | MR | Zbl

[35] Michel Waldschmidt Raconte moi ...une période, Gaz. Math., Soc. Math. Fr., Volume 143 (2015), pp. 75-77 | Zbl

[36] Inna Zakharevich Perspectives on scissors congruence, Bull. Am. Math. Soc., Volume 53 (2016) no. 2, pp. 269-294 | DOI | MR | Zbl

Cité par Sources :