We prove some (and conjecture more) relations between the multizeta values for positive genus function fields of class number one, focusing on the zeta-like values, namely those whose ratio with the zeta value of the same weight is rational (or conjecturally equivalently, algebraic). These are the first known relations between multizetas, which are not with prime field coefficients. We seem to have one universal family. We also find that, interestingly, the mechanism with which the relations work is quite different from the rational function field case, raising interesting questions about the expected motivic interpretation in higher genus.
Nous démontrons certaines relations (et en conjecturons d’autres) entre les valeurs des multizêtas pour les corps de fonctions de genre positif et de nombre de classes
Révisé le :
Accepté le :
Publié le :
Mots-clés : t-motives, periods, mixed Tate motives
José Alejandro Lara Rodríguez 1 ; Dinesh S. Thakur 2

@article{JTNB_2021__33_2_553_0, author = {Jos\'e Alejandro Lara Rodr{\'\i}guez and Dinesh S. Thakur}, title = {Zeta-like {Multizeta} {Values} for higher genus curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {553--581}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {2}, year = {2021}, doi = {10.5802/jtnb.1169}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1169/} }
TY - JOUR AU - José Alejandro Lara Rodríguez AU - Dinesh S. Thakur TI - Zeta-like Multizeta Values for higher genus curves JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 553 EP - 581 VL - 33 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1169/ DO - 10.5802/jtnb.1169 LA - en ID - JTNB_2021__33_2_553_0 ER -
%0 Journal Article %A José Alejandro Lara Rodríguez %A Dinesh S. Thakur %T Zeta-like Multizeta Values for higher genus curves %J Journal de théorie des nombres de Bordeaux %D 2021 %P 553-581 %V 33 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1169/ %R 10.5802/jtnb.1169 %G en %F JTNB_2021__33_2_553_0
José Alejandro Lara Rodríguez; Dinesh S. Thakur. Zeta-like Multizeta Values for higher genus curves. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 2, pp. 553-581. doi : 10.5802/jtnb.1169. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1169/
[1]
[2] Rank one elliptic
[3] Log-algebraicity of twisted
[4] Tensor powers of the Carlitz module and zeta values, Ann. Math., Volume 132 (1990) no. 1, pp. 159-191 | DOI | MR | Zbl
[5] Multizeta values for
[6] Arithmetic of positive characteristic
[7] The distribution of the zeros of the Goss zeta-function for
[8] On certain functions connected with polynomials in a Galois field, Duke Math. J., Volume 1 (1935), pp. 137-168 | MR | Zbl
[9] An effective criterion for Eulerian multizeta values in positive characteristic, J. Eur. Math. Soc., Volume 21 (2019) no. 2, pp. 405-440 | DOI | MR | Zbl
[10] Anderson–Thakur polynomials and multizeta values in finite characteristic, Asian J. Math., Volume 21 (2017) no. 6, pp. 1135-1152 | DOI | MR | Zbl
[11] Towards a class number formula for Drinfeld modules, Ph. D. Thesis, U. Amsterdam (2016)
[12] Special
[13] Basic structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 35, Springer, 1996 | MR | Zbl
[14] Special
[15] Zeta-like multizeta values for
[16] Shtuka cohomology and special values of Goss L-functions, Ph. D. Thesis, U. Leiden (2018)
[17] A Dirichlet unit theorem for Drinfeld modules, Math. Ann., Volume 348 (2010) no. 4, pp. 899-907 | DOI | MR | Zbl
[18] Drinfeld modules and arithmetic in function fields, Int. Math. Res. Not., Volume 1992 (1992) no. 9, pp. 185-197 | DOI | MR | Zbl
[19] Shtukas and Jacobi sums, Invent. Math., Volume 111 (1993) no. 3, pp. 557-570 | DOI | MR | Zbl
[20] Function Field Arithmetic, World Scientific, 2004 | Zbl
[21] Multizeta in function field arithmetic,
[22] Relations between multizeta values for
[23] Shuffle Relations for Function Field Multizeta Values, Int. Math. Res. Not., Volume 2010 (2010) no. 11, pp. 1973-1980 | MR | Zbl
[24] Arithmetic of Gamma, Zeta and Multizeta values for Function Fields, Arithmetic geometry over global function fields (Advanced Courses in Mathematics - CRM Barcelona), Birkhäuser, 2014 | Zbl
[25] Multizeta values for function fields: A survey, J. Théor. Nombres Bordeaux, Volume 29 (2017) no. 3, pp. 997-1023 | DOI | Numdam | MR | Zbl
[26] Conjectural characterization for
[27] Multiple zeta functions, multiple polylogarithms and their special values, Series on Number Theory and Its Applications, 12, World Scientific, 2016 | MR | Zbl
Cité par Sources :